A Prism-based System for Multispectral Video Acquisition

Hao Du^{*#} Xin Tong[§] Xun Cao^J Stephen Lin[§]

* Fudan University

- [#] University of Washington
- [§] Microsoft Research Asia
- ^J Tsinghua University

Grayscale Imaging

Color Imaging

Multispectral Imaging

Related Works

- Sensor filter-mask
 - [Kidono07]
 - Four channels -- R,G,B and IR
- Filter switching
 - [Gat00][Yamaguchi06][Schechner02]
 - Too slow for video acquisition
- Active illumination
 - [Park07]
 - Requires controlled light source
- Computation Based
 - [Descour95][Vandervlugt07][Wagadarikar08]
 - Difficult to calibrate; High computation cost
- Other optical systems
 - [Harvey05] Requires special optical devices
 - [Mohan08] No high spectrum resolution demonstrated

Our Work

A Prism-based Imaging System

- Passively capturing multispectral video
- High spectra-resolution
- Low cost
- Easy setup and calibration

[This GIF animation is referenced from Wikipedia]

A Typical Camera

Camera & Prism

Camera & Mask

Camera & Mask & Prism

Prototype System

Pointgrey grayscale camera 2248x2048 @15fps

capturing system

mask

Device Setup

Tradeoff Spatial/Spectral Resolution

Tradeoff Spatial/Spectral Resolution

 $w(S_1) = l \cdot \left(\tan(a + \beta'(\lambda_e)) - \tan(a + \beta'(\lambda_s)) \right)$

Tradeoff Spatial/Spectral Resolution

 $w(S_1) = l \cdot \left(\tan(a + \beta'(\lambda_e)) - \tan(a + \beta'(\lambda_s)) \right)$

Tradeoff Spatial/Spectral Resolution

 $w(S_1) = l \cdot \left(\tan(a + \beta'(\lambda_e)) - \tan(a + \beta'(\lambda_s)) \right)$

Mask-Hole Distance

Mask-Hole Distance

Mask-Hole Distance In practice, we can use a uniform mask nage plane

Device Calibration

Calibration Overview

Ground truth fluorescent spectra

Ground truth fluorescent spectra

• Mapping Function : Wavelength <-> Position

$$x(\lambda) = l \cdot \tan\left(a + \arcsin(n_{\lambda} \cdot \sin(\omega - \arcsin(\frac{\sin\alpha}{n_{\lambda}})))\right)$$

Non linear, but smooth curve !

Mapping Function

Simulation

• The Method

– B-Spline << 2 seeds + 7 control points</p>

– Low reconstruction error : < 0.7%</p>

The Process

captured spectra

target spectra

Ground truth fluorescent spectra

Geometry Calibration

Geometry Calibration

Predefined mask pattern

Radiance Calibration

Radiance Calibration

Applications

Human Skin Detection

- The 'W' pattern in human skin reflectance
 - [Angelopoulou01]

Human Skin Detection

Material Discrimination

RGB Image

IR Image

The differences in IR

RGB Video Generation and Illumination Detection

Illumination Detection

Conclusion

- A prism based Imaging System
 - Passive Multispectral Video
 - High spectrum resolution
 - Tradeoff spectral and spatial resolution
 - Easy setup and calibration

- Applications
 - Skin detection
 - Material Recognition
 - Illumination Identification

Limitations

- Light flow is limited by
 - occlusion mask
 - relatively small aperture

- Cannot achieve both high spatial and spectral resolution
 - Limited CCD resolution

Acknowledgements

• Yue Xu

Assistance in experimentation

• Moshe Ben-Ezra

Helpful discussions on implementation issues

- Reviewers
 - Constructive comments

THANK YOU

The Optical Path

Spectra of Illuminations

Fluorescent Illumination

Tungsten Illumination (the bottom blue part shows a fluorescent calibration pattern)

Sun Illumination (the bottom blue part shows a fluorescent calibration pattern)

· Fluorescent Illumination with a 650nm red laser beam