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Abstract. This paper proposes a new classification method termed Rec-
tified Nearest Feature Line Segment (RNFLS). It overcomes the draw-
backs of the original Nearest Feature Line (NFL) classifier and possesses
a novel property that centralizes the probability density of the initial
sample distribution, which significantly enhances the classification abil-
ity. Another remarkable merit is that RNFLS is applicable to complex
problems such as two-spirals, which the original NFL cannot deal with
properly. Experimental comparisons with NFL, NN(Nearest Neighbor),
k-NN and NNL (Nearest Neighbor Line) using artificial and real-world
datasets demonstrate that RNFLS offers the best performance.

1 Introduction

Nearest Feature Line (NFL) [1], a newly developed nonparametric pattern clas-
sification method, has recently received considerable attention. It attempts to
enhance the representational capacity of a sample set of limited size by using
the lines passing through each pair of the samples belonging to the same class.
Simple yet effective, NFL shows good performance in many applications, includ-
ing face recognition [1] [2], audio retrieval [3], image classification [4], speaker
identification [5] and object recognition [6].

On the other hand, feature lines may produce detrimental effects that lead
to increased decision errors. Compared with the well-known Nearest Neighbor
(NN) classifier [7], NFL has obvious drawbacks under certain situations that
limit its further potential. The authors of [8] pointed out one of the problems –
extrapolation inaccuracy, and proposed a solution called Nearest Neighbor Line
(NNL). This extrapolation inaccuracy may lead to enormous decision errors in
a low dimensional feature space while a simple NN classifier easily reaches a
perfect correct classification rate of 100%. Another drawback of NFL is interpo-
lation inaccuracy. Distributions assuming a complex shape (two-spiral problem
for example) often fall into this category, where, by the original NFL, the inter-
polating parts of the feature lines of one class break up the area of another class
and severely damage the decision region.
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In this paper, a new nonparametric classification method, Rectified Nearest
Feature Line Segment (RNFLS), is proposed that addresses both of the above-
mentioned drawbacks and significantly improves the performance of NFL. The
original NFL can conceptually be viewed as a two-stage algorithm – building rep-
resentational subspaces for each class and then performing the nearest distance
classification. We focus mainly on the first stage. To overcome extrapolation
inaccuracy, Nearest Feature Line Segment subspace (NFLS-subspace) is devel-
oped. For the interpolation inaccuracy, the “territory” of each sample point and
each class is defined, and we obtain Rectified Nearest Feature Line Segment sub-
space(RNFLS-subspace) from NFLS-subspace by eliminating those feature line
segments trespassing the territory of other classes. As a result, RNFLS works
well for all shapes of sample distribution, which is a significant improvement.

Another remarkable advantage of RNFLS is that it centralizes the probability
density of the initial sample distribution. We show, in an experiment, that the
decision region created by RNFLS gets closer to the one built by using the op-
timal Bayesian rule, bringing the correct classification rate higher. Comparisons
with NN, k-NN, NFL, NNL using artificial and real-world datasets demonstrate
that the proposed RNFLS method offers remarkably superior performance.

2 Background

2.1 The Nearest Feature Line Method

The Nearest Feature Line (NFL) [1] method constructs a feature subspace for
each class, consisting of straight lines passing through every pair of the samples
belonging to that class. The straight line passing through samples xi, xj of the
same class, denoted by xixj , is called a feature line of that class. All the feature
lines of class ω constitute an NFL-subspace to represent class ω, denoted by
Sω = {xω

i xω
j |xi, xj ∈ ω, xi 6= xj}, which is a subset of the entire feature space.

During classification, a query point q is classified to class ω if q assumes the
smallest distance to Sω than to any other Sω′ , (ω 6= ω′) . The distance from q
to Sω is

d(q,Sω) = min
xixj∈Sω

d(q, xixj). (1)

= min
xixj∈Sω

‖q − pij‖ (2)

where pij is the projection point of q onto line xixj .
The projection point can be computed by

pij = (1− µ)xi + µxj , (3)

where

µ =
(q − xi).(xj − xi)
(xj − xi).(xj − xi)

. (4)



2.2 Shortcomings

NFL extends the samples of one class by adding the straight lines linking each
pair. A good argument for doing this is that it adds extra information to the
sample set. The extra information, however, is a double-edged sword. When a
straight line of one class trespasses into the territory of another class, it will lead
to increased error probability. There are two types of trespassing, causing two
types of inaccuracies: extrapolation inaccuracy and interpolation inaccuracy.

Fig.1(a) shows a classification problem in which the extrapolation inaccuracy
occurs. The query q, surrounded by four “cross” sample points, is in the territory
of the “cross” class, leading to the expectation that q should be classified to the
“cross” class. But the extrapolating part of feature line x1x2 makes the distance
from q to x1x2 smaller. Thus, d(q,Scircle) < d(q,Scross), and NFL will assign q
the label “circle”, not “cross”. This is very likely to be a decision error. Similarly,
the interpolation inaccuracy caused by the interpolating part of a feature line is
illustrated in Fig.1(b).

(a) (b)

Fig. 1. (a)Extrapolation inaccuracy. (b)Interpolation inaccuracy.

The above inaccuracies are drawbacks that limit the applicability of NFL.
In the following section we pursue a more systematic approach in which a new
feature subspace for each class is constructed to avoid both drawbacks. The
original advantage of NFL that linearly extending the representational capacity
of the original samples is retained in our method.

3 Rectified Nearest Feature Line Segment

3.1 Using Feature Line Segments

To avoid extrapolation inaccuracy, we propose to use line segments between
pairs of the sample points to construct a Nearest Feature Line Segment subspace
(NFLS-subspace) instead of the original NFL-subspace to represent each class.



Let Xω = {xω
i |1 ≤ i ≤ Nω} be the set of Nω samples belonging to class ω. The

NFLS-subspace (S̃ω) representing class ω is

S̃ω = {x̃ω
i xω

j |1 ≤ i, j ≤ Nω}, (5)

where x̃ω
i xω

j denotes the line segment connecting point xω
i and xω

j . Note that a
degenerative line segment x̃ω

i xω
i (1 ≤ i ≤ Nω), which is a point in the feature

space, is also a member of S̃ω.
The distance from a query point q to an NFLS-subspace S̃ω is defined as

d(q, S̃ω) = min
x̃ixj∈S̃ωk

d(q, x̃ixj) (6)

where
d(q, x̃ixj) = min

y∈x̃ixj

‖q − y‖. (7)

And to calculate d(q, x̃ixj), there are two cases. If xi = xj , the answer is simply
the point to point distance,

d(q, x̃ixi) = ‖q − xi‖. (8)

Otherwise, the projection point p of q onto xixj is to be located first by using
Equ.(3) and Equ.(4). Then, different reference points are chosen to calculate
d(q, x̃ixj) according to the position parameter µ. When 0 < µ < 1, p is an
interpolation point between xi and xj , so d(q, x̃ixj) = ‖q − p‖. When µ < 0,
p is a “backward” extrapolation point on the xi side, so d(q, x̃ixj) = ‖q − xi‖.
When µ > 1, p is a “forward” extrapolation point on the xj side, so d(q, x̃ixj) =
‖q − xj‖. Fig.2 shows an example.

In the classification stage, a query q is classified to class ωk when d(q, S̃ωk
)

is smaller than the distance from q to any other S̃ωi
(ωi 6= ωk).

Fig. 2. Distance (solid lines) from feature
points to feature line segment x̃ixj .

Fig. 3. The territory of “cross”-samples
shown in dashed circle.



3.2 Rectifying the Feature Line Segment Subspace

The next step is to rectify the NFLS-subspace to eliminate interpolation inac-
curacy. Our motivation is to have the inappropriate line segments removed from
the NFLS-subspace S̃ωk

for each class ωk,. The resulting subspace denoted by
S̃∗ωk

is a subset of S̃ωk
termed Rectified Nearest Feature Line Segment subspace

(RNFLS-subspace).

Territory We begin with the definitions of two types of territories. One is
sample-territory, Tx ∈ <n, that is the territory of a sample point x; the other
is class-territory, Tω ∈ <n, that is the territory of class ω. Suppose the sample
set X is {(x1, θ1), (x2, θ2), ..., (xm, θm)}, which means xi belongs to class θi. The
radius rxk

of the sample-territory Txk
is,

rxk
= min
∀xi,θi 6=θk

‖xi − xk‖. (9)

Thus,
Txk

= {y ∈ <n|‖y − xk‖ < rxk
}. (10)

The class-territory Tωk
is defined to be

Tωk
=

⋃

θi=ωk

Txi
, (xi, θi) ∈ X. (11)

In Fig.3, the points denoted by “circle” and “cross” represent the samples from
two classes. Each of the “cross”-points (y1, y2, y3) has its own sample-territory
as shown by the dashed circle. The union of these sample-territories is Tcross.
Tcircle is obtained in a similar way.

Building RNFLS-subspace For class ωk, its RNFLS-subspace S̃∗ωk
is built

from the NFLS-subspace S̃ωk
by having those line segments trespassing the class-

territories of other classes removed. That is

S̃∗ωk
= S̃ωk

− Ũωk
, (12)

where ’−’ is the set difference operator, and

Ũωk
= {x̃ixj |∃ωy, ωk 6= ωy ∧ x̃ixj ∈ S̃∗ωk

∧ x̃ixj ∩ Tωy
6= φ}

= {x̃ixj |∃(xy, θy) ∈ X, x̃ixj ∈ S̃∗ωk
∧ ωk 6= θy ∧ d(xy, x̃ixj) < rxy

}. (13)

Classifying using RNFLS-subspaces To perform classification using RNFLS-
subspaces is similar to using NFLS-subspaces, since the only difference between
an RNFLS-subspace and an NFLS-subspace is S̃∗ωk

= S̃ωk
− Ũωk

, where, except
for some removed line segments, S̃∗ωk

is still a set consisting of line segments.
The distance measure from a query point to the RNFLS-subspace remains the
same.



3.3 Analyzing the Centralization Property

In many real-world pattern recognition problems, samples from one class tend
to scatter around a certain center point because of systematic error and random
noise. Gaussian distribution is an example. Two scattered classes may overlap
each other, causing decision errors. Compared with the original ideal sample
distribution without noise, the NFLS-subspace of each class has an impressive
property – distribution centralization, which can be viewed as the converse of
scattering. With the help of NFLS-subspace, the distribution overlapping is re-
duced, and the probability distribution grows closer to the original. And so, we
get a higher correct classification rate.

The simplest case to show the centralization property is when the distribution
is uniform in a two-dimensional feature space. Suppose that the sample points
of class ω are uniformly distributed in a disk D whose radius is R and the center
is at O, as shown in Fig.4. For the NFLS-subspace of the class, consider a small
region M(a, r) (a ≤ R), that is a round area with an arbitrarily small radius r
and distance a from O. Let Nω

a be the probability of a randomly selected feature
line segment of class ω passing through M(a, r).

Fig. 4. Calculating Nω
a for a uniform sample point density on a disk.

Proposition 1 Given an arbitrarily small r, Nω
a is decreasing on a.

Proof We calculate Nω
a in a polar coordinate system by choosing the center

of M(a, r) as pole and −−→OM as polar axis. For a line segment X̃Y passing through
M(a, r), given one endpoint X(ρ, θ) in D, the other endpoint Y has to appear
in the corresponding 2M1M2HG, as shown in Fig.4. Thus we obtain

Nω
a =

∫∫

D

1
πR2

A(ρ, θ)ρdρdθ

=
∫ 2π

0

∫ |MC|

0

1
πR2

A(ρ, θ)ρdρdθ (14)



where A(ρ, θ) is the probability that the randomly generated endpoint Y appears
in 2M1M2HG,

A(ρ, θ) =
1

πR2

[1
2
(2r + |GH|) · |MG|+ o(r)

]
(15)

According to Equ.(14) and (15)

Nω
a =

2r(R2 − a2)
(πR2)2

∫ 2π

0

√
R2 − a2 sin2 θ · dθ + o(r). (16)

Thus, for a fixed r, Nω
a gets smaller when a gets larger.

Proposition 1 indicates that the distribution of line segments in the NFLS-
subspace is denser at the center than at the boundary if the original sample
points distribution is under a uniform density. A Gaussian distribution can be
viewed as a pile-up of several uniform distribution disks with the same center
but different radius. It is conjectured that this centralization property also ap-
plies to the Gaussian case, and can be extended to classification problems in
which the overlapping is caused by noise scattering of two or more classes under
similar distribution but different centers. It reverses the scattering and achieves
a substantial improvement.

4 Experiment Results and Discussions

The performance of the RNFLS method is compared with four classifiers - NN, k-
NN, NFL and NNL - using two artificial datasets as well as a group of real-world
benchmarks widely used to evaluate classifiers. The results on these datasets,
representing various distributions and different dimensions, demonstrate that
RNFLS possesses remarkably stronger classification ability than the other four
methods.

4.1 The Two-Spiral Problem

The two-spiral problem is now included by many authors as one of the bench-
marks for evaluation of new classification algorithms. The two-spiral curves in a
two-dimensional feature space is described as follows

spiral1 :
{x = kθ cos(θ)

y = kθ sin(θ) spiral2 :
{x = kθ cos(θ + π)

y = kθ sin(θ + π) (17)

where θ ≥ π/2 is the parameter. If the probability density of each class is uni-
form along the corresponding curve, an instance of such distribution is shown in
Fig.5(a).

In our experiment, Gaussian noise is added to the samples so that the distri-
bution regions of the two classes may overlap each other, as shown in Fig.5(b).
If the prior distribution density were known, according to the optimal Bayesian
rule, Fig.5(d) should be the optimal decision region. This, however, can hardly



(a) (b) (c)

(d) (e) (f)

Fig. 5. (a)Two-spiral problem. (b)Two-spiral problem with Gaussian noise. (c)RNFLS
subspaces. (d)Bayesian decision region. (e)NN classification result. (f)RNFLS classifi-
cation result.

be achieved because the only information we have is from a finite number of
sample points.

The original NFL is not a good choice for this classification problem. We
may imagine how fragmented the decision region is carved up because of its
interpolation and extrapolation inaccuracy. The decision region created by NN
rule is shown in Fig.5(e). When it comes to RNFLS, Fig.5(c) is the RNFLS-
subspaces and Fig.5(f) is the corresponding decision region. Compared with the
decision region created by NN, RNFLS produces a much better one in which the
boundary is smoother and some incorrect regions caused by isolated noise points
is smaller. This significant enhancement can be attributed to the centralization
property.

As a concrete test, let θ ∈ [π/2, 3π] and the Gaussian noise is of a variance
σ = 1.7 and an expectation µ = 0. We produce 500 points according to the
well-defined distribution, where 250 belong to class ω1 and the other 250 belong
to class ω2. Then, half of them are randomly chosen to form the sample set and
the remaining half constitute the test set. The classifiers, NN, k-NN(k=3), NFL,
NNL and RNFLS, are applied to this task for 10 times, and Table 1 shows the
results.



Table 1. Performance evaluation on the two-spiral problem using NN, 3-NN, NFL[1],
NNL[8] and RNFLS. (CCR: correct classification rate, percentage)

Classifier CCR (average) CCR (min) CCR(max)

NN 83.2 80.4 85.3

k-NN(k=3) 85.3 83.2 87.3

NFL 53.2 49.8 56.7

NNL 72.4 69.0 78.0

RNFLS 86.1 84.0 88.2

4.2 Real-World Classification Problems

We test the RNFLS classifier on a group of real-world datasets as listed in
Table 2. All of the datasets are obtained from the U.C. Irvine repository [9].
Since we do not deal with the issue of missing data, instances with missing
values are removed. For the fairness of the procedure, attributes of the instances
are standardized (normalized) by their means and standard deviations before
submitted to the classifiers. The performance in CCR is obtained using the
leave-one-out procedure.

Table 2. CCR(%) for NN, 3-NN, NFL, NNL and RNFLS on the real-world datasets

Dataset #Classes #Instances #Attributes NN 3NN NFL NNL RNFLS

1 iris 3 150 4 94.7 94.7 88.7 94.7 95.3

2 housing 6 506 13 70.8 73.0 71.1 67.6 73.5

3 pima 2 768 8 70.6 73.6 67.1 62.8 73.0

4 wine 3 178 13 95.5 95.5 92.7 78.7 97.2

5 bupa 2 345 6 63.2 65.2 63.5 57.4 66.4

6 ionosphere 2 351 34 86.3 84.6 85.2 87.2 94.3

7 wpbc 2 194 32 72.7 68.6 72.7 54.1 75.8

8 wdbc 2 569 30 95.1 96.5 95.3 64.0 97.2

It can be seen that RNFLS performs well on both two-category and multi-
category classification problems in both low and high dimensional feature spaces.
This is encouraging since these datasets represent real-world problems and none
of them is specially designed to suit a specific classifier. Since one common
characteristic of real-world problems is distribution dispersing caused by noise,
the centralization property of RNFLS helps improving the correct classification
rate.



5 Conclusions and Future Work

A new classification method RNFLS is developed. It enhances the representa-
tional capacity of the original sample points and constitutes a substantial im-
provement to NFL. It works well independent of the distribution shape and the
feature-space dimension. In particular, viewed as the converse of sample scatter-
ing, RNFLS is able to centralize the initial distribution of the sample points and
offers a higher correct classification rates for common classification problems.

Further investigation into RNFLS seems warranted. In the rectification pro-
cess it would be helpful to reduce the runtime-complexity, perhaps using some
kind of probability algorithms. It may also be helpful to treat the trespassing
feature line segments more specifically, for example, finding a way to cut off a
part of a trespasser instead of eliminating the whole feature line segments. Also
worth more investigation is the centralization property, which might be of great
potential.
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