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Abstract

Most 3D reconstruction solutions focus on surfaces, and
there has not been much research attention paid to the prob-
lem of reconstructing 3D scenes made up of large num-
bers of particles, while the ability to reconstruct such dy-
namic scenes is potentially very useful in many areas such
as colony behavior research and visual modeling.

This paper proposes an approach - Relative Epipolar
Motion (REM) - towards solving the correspondence prob-
lem in stereopsis by utilizing the motion clue. It matches
feature trajectories instead of the features themselves as
used by existing methods. The proposed method has the
following new capabilities: (1) It supports reconstructing
dynamic 3D scenes of large number of undistinguishable
drifting particles; (2) It is applicable to correspondence es-
tablishment for dynamic surfaces made up of repetitive tex-
tures; (3) It offers an alternative way to project structured
light in active mode for deforming surface reconstruction.
Experiment results on both simulated and real-world scenes
demonstrate its effectiveness.

1. Introduction

Our environments are full of scenes containing drifting
objects, and the 3D reconstruction of such scenes are of
high values. Examples include: (1) dynamic fish schools,
bird flocks, bee swarms which are important subjects for be-
havior research [12]; (2) interactive microscopic biological
particles such as enzymes, proteins, viruses, cells which are
of key significance to biologists[10]; (3) falling snowflakes,
exploding fireworks which are appealing scenes for visual
modeling[16]. By reconstructing such dynamic particle-
like scenes we mean obtaining the time-varying 3D coor-
dinates of the particles. This poses a challenging problem
different from the well-studied problem of reconstructing
3D surfaces.

Many shape from X (shading, textures, laser, structured

light, motion, etc) methods in the literature that work well
for surface reconstruction will encounter difficulties in par-
ticle reconstruction. Scenes containing large numbers of
drifting particles provide enough salient yet nearly identi-
cal features, leading to lack of clues for correspondence es-
tablishment using existing stereo methods. Moreover, such
scenes are laser, structured light and shading unsolvable.
Structure from motion also fails since the scene is non-
rigid. Although there exists methods for the ‘trajectory-
based video synchronization’ problem [3, 2] that track and
match such undistinguishable scene features, they are only
able to tackle a few tens of feature trajectories and can
not support a full 3D reconstruction task since they apply
a relatively weak constraint for trajectory matching due to
the synchronization and calibration information being un-
known.

In this paper, we propose to utilize a motion clue, termed
relative epipolar motion (REM), towards solving the cor-
respondence problem in the binocular stereo setting (it can
be extended to multi-view stereo). The method is based on
the observation that, during a time-span in which the par-
ticles move, (1) a genuine matching of feature points of
the same particle satisfies the epipolar constraint at every
frame, (2) a genuine matching of feature points possesses
the same motion velocity component perpendicular to the
epipolar lines in the rectified common plane at every time
instance. Experiments using artificial and real-world scenes
containing drifting particles demonstrate the effectiveness
of our method in establishing correspondence.

The proposed method can also be used for the widely
studied surface reconstruction problem. In passive mode,
it can establish correct correspondence of the features from
repetitive natural textures. In active mode, it captures de-
forming textureless surfaces by projecting mono-colored
particle-like active patterns, which is less affected by sur-
face reflectance properties, and is reliable for reconstructing
complex scenes with isolated parts. Experiments on surface
reconstruction in passive-mode and active-mode demon-
strate the applicability of the proposed REM method.



The rest of the paper is organized as follows. Section
2 lists related works on 3D reconstruction including stereo
methods and monocular methods. Section 3 describes the
motivation and principle. Section 4 presents the proposed
method. Section 5 gives the experiment results. Section
6 discusses its characteristics. Conclusions are drawn in
Section 7.

2. Related Works

Stereo 3D reconstruction methods involve feature match-
ing and triangulation computation. The key difficulty lies
in the former. Many works on passive matching (e.g.
area-based correlation, dynamic programming matching[6],
graph-cut matching[9], hierarchical approaches[5], trinoc-
ular and multi-view methods[6], etc) only consider single
pair of images at one time-instance. These approaches make
use of pixel or local texture information, as well as smooth
constraints of object surfaces. False correspondences are
likely to occur in dealing with complex scenes containing
objects with isolated parts and repetitive textures.

Structured light methods use coded light to establish cor-
respondence between stereo cameras or between the pro-
jector and the camera. Such methods include one-shot
techniques by projecting color-coded[17], phase-coded[20]
light patterns, and space-time[4, 18] methods by project-
ing active patterns that change over time and estimating a
linear spatial-temporal window. One-shot methods tend to
be affected by the reflectance properties of the target sur-
faces, while space-time methods require the projectors to
have high refresh-rates. Another limitation with structured
light is that the added lighting may be nuisance or may even
be infeasible when the objects are at large distances or are
photophobic.

In monocular methods, the goal is to seek simpler set-
tings, easy calibration, etc. Shape from shading[19] and
shape from defocus[11] are methods free of the stereo corre-
spondence problem, yet, the former fails if the surfaces are
not smooth, and the latter produces relatively low accuracy
in depth estimation. Structure from motion[8] can recover
3D structure of rigid scenes by a moving video camera, and
good dense results [1, 15] have been reported, however,
these methods are limited to rigid scenes, although recent
research attempts to deal with dynamic scenes by detect-
ing and segmenting out several rigid independent moving
parts[13].

There remains the challenge to reconstruct dynamic
scenes made up of large numbers of drifting particles. Also
difficult are dynamic scenes consisting of repetitively tex-
tured deforming surfaces and isolated parts.
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Figure 1. Relative epipolar motion. Two scene particles Pi(t),
Pj(t) are moving over a time span. Let A, B be the rectified cam-
era retinas[7]. At time t0, the projections of Pi(t0), Pj(t0) on B,
pi

B(t0), pj
B(t0) both lie on the associated epipolar line of pi

A(t0),
denoted by l(pi

A(t0)), resulting in multiple candidates for the cor-
respondence of pi

A. Motion clue #1: When these scene particles
move to new positions Pi(t1), Pj(t1) at time t1, the correspon-
dence for pi

A ↔ pi
B is successfully established because the false

candidate pj
B moves out of the associated epipolar line l(pi

A(t1))
while the real one still remains on the line. Motion clue #2: the
velocities of feature points from a true matching pi

A ↔ pi
B or

pj
A ↔ pj

B maintain the property that their vertical components
perpendicular to the epipolar lines remain the same at every time
instance, denoted by ṽi

A(t) ≡ ṽi
B(t), ṽj

A(t) ≡ ṽj
B(t).

3. Motivation and Principle

The proposed method makes use of two relative epipolar
motion clues.

Motion clue #1: The basic principle towards utilizing
the relative epipolar motion is based on the observation
that, given a moving scene point, its two projections on the
binocular retinal planes always stay on the same epipolar
plane containing the scene point no matter how it moves,
i.e. in the rectified common plane [7], the two projections
always lie on the same epipolar line, as illustrated in Fig-
ure 1. Existing matching methods using single image pair
come across ambiguity if more than one moving scene par-
ticle once coincide on the same epipolar line, while these
points may move to new positions where their epipolar lines
separate, and the matching ambiguity vanishes. Figure 1 il-
lustrates this situation.

Motion clue #2: For a pair of feature points of a true
matching, the vertical velocity components perpendicular
to the epipolar lines on the rectified common plane remain
the same at every time instance. Although this is deducible
from motion clue #1, it has independent importance in real
tasks. Due to distortion from lens and sensor planes, and the
inaccurate feature detection, a width to tolerate the resultant
epipolar line inaccuracy is needed, thus for matching ambi-



guities that cannot be overcome by the width, motion clue
#2 is helpful.

The above observation motivates us to track the trajec-
tory of each feature point and then to establish correct cor-
respondence of two trajectories, each on one of the two
retinal planes, by examining (1) whether the two moving
feature points making up the trajectories are on the asso-
ciated epipolar lines at every frame, and (2) whether the
velocity component perpendicular to the epipolar lines are
similar enough. Once the correspondence for trajectories is
established, feature points that make up the trajectories are
matched.

4. The Method

In this section, we formulate the 3D particle reconstruc-
tion problem and present our method, termed relative epipo-
lar motion(REM).

4.1. The Problem of 3D Particle Reconstruction

Suppose P = {Pk(t)}, Pk(t) ∈ �3 is the set of particles
drifting in the world space. They are captured at discreet
time instances by a pair of video cameras with intrinsic and
extrinsic parameters calibrated. Let A, B be the rectified
image planes of the two cameras, and the particles project
onto A, B as feature points denoted by PA = {pk

A(t)},
PB = {pk

B(t)}, where each pk
Π(t),Π = A|B, forms a tra-

jectory over the time sequence. The task is to reconstruct
the original P given the observations and the calibration pa-
rameters.

Several factors make the extracted trajectories in PΠ less
than perfect. Firstly, some observed trajectories have to be
divided into segments to eliminate tracking ambiguity when
collisions of scene particles or occlusions of projected fea-
ture points occur. Secondly, coordinate errors exist because
the detected centroid of a feature point in 2D-projection im-
age may not coincide with the actual centroid of the par-
ticle, especially when the scene particle is non-regular in
shape and its projection takes a region covering several pix-
els in the image. Other aspects such as the particles’ moving
in-and-out of the camera image plane, and uncalibratable
geometrical distortions caused by the lens also reduce the
observation accuracy.

Suppose there are a number of nΠ extracted trajectories
on the rectified image plane Π. Each trajectory Ti

Π has its
start time δi

Π, end time ζi
Π and image coordinate qi

Π(t) =
(xi

Π(t), yi
Π(t))T on Π during the time span:

Ti
Π =

(
qi

Π(t), δi
Π, ζi

Π

)
, (1)

where,

t ∈ [δi
Π, ζi

Π], i = 1, 2, ..., nΠ, Π = A|B. (2)

The common time span η(i, j) of trajectories Ti
A in A and

Tj
B in B is:

η(i, j) = {t|max(δi
A, δj

B) ≤ t ≤ min(ζi
A, ζj

B)}. (3)

In addition, local descriptions of a feature point such as
color, intensity or texture might be available, thus, let the
window wΠ(qi

Π(t)) be a local image patch on Π at time t at
the coordinate qi

Π(t).
Notice that, in the above statement, the epipolar con-

straint tells that if feature points qi
A(t) and qj

B(t) are a gen-
uine match at time t, we have

|yi
A(t) − yj

B(t)| < ε, (4)

where yi
Π is the vertical coordinate of qi

Π, and ε is a width
to tolerate the inaccuracy.

4.2. Matching Score between Trajectories

The proposed method matches feature trajectories ex-
tracted from the image sequence instead of the feature
points between one pair of images at one time as adopted
by many existing stereo methods.

A matching score between a pair of trajectories is de-
fined by combining the motion clues and local texture de-
scription,

s = αs1 + βs2 + γs3, (5)

where s1, s2 are the scores relating to two motion clues
#1,#2, and s3 is the score relating to texture description,
α, β, γ are the weights to balance the contributions of each
term. The matching score describes the similarity between
two trajectories with smaller score indicating higher simi-
larity.

The matching score between two trajectories that share
no common time span is set to infinity,

s(Ti
A, Tj

B) = ∞, if η(i, j) = ∅, (6)

We then only consider trajectories that share common time
span.

The first score s1 is based on motion clue #1 that, dur-
ing a time span when particles move, a true matching of
their projections (features) satisfies the epipolar constraint
at every time instance. If at any time, the features of candi-
date trajectory pair Ti

A and Tj
B go to epipolar planes with

large difference, s1(Ti
A, Tj

B) would be large, indicating that
the two trajectories are not likely to be genuine matching.
Let

e(Ti
A, Tj

B) = max
t∈η(i,j)

{|yi
A(t) − yj

B(t)|}. (7)

Score s1 is defined as,

s1(Ti
A, Tj

B ; ε) =

{
e(Ti

A, Tj
B) e(Ti

A, Tj
B) < ε

∞ otherwise
, (8)



where ε is the threshold to tolerate the inaccuracy.
The second score s2 derives from the velocity. On the

rectified projection planes A and B, the vertical velocity
components perpendicular to the epipolar lines of two gen-
uinely matched features remain similar, thus,

s2(Ti
A, Tj

B) =
1

|η(i, j)|
∑

t∈η(i,j)

|ṽi
A(t) − ṽj

B(t)|2, (9)

where, {
ṽi

A(t) = yi
A(t) − yi

A(t −�t)
ṽj

B(t) = yj
B(t) − yj

B(t −�t)
, (10)

and |η(i, j)| is the length of the common time-span for nor-
malization.

The third score s3 describes the similarity of the local
image areas of the features if local texture is available,

s3(Ti
A, Tj

B) =
1

|η(i, j)|
∑

t∈η(i,j)

C
(
wA(qi

A(t)), wB(qj
B(t))

)
,

(11)
where C is some correlation or similarity measure of texture
patches, with small value indicating high similarity.

From Equations (5,6,8,9,11), the final integrated match-
ing score s between two trajectories is,

s(Ti
A, Tj

B) ={
αs1(.; ε) + βs2(.) + γs2(.) η(i, j) �= ∅
∞ otherwise

. (12)

4.3. Correspondence Establishment

After obtaining the matching scores between trajectories,
the scene can be reconstructed frame-by-frame. The key is
to establish the correspondences between trajectory pairs at
each frame, then feature points making up these trajectories
at that frame are matched and the 3D scene can be recon-
structed by stereo triangulation.

The correspondence matching can be formulated as a
maximum weighted bipartite matching problem[14] with
trajectories Ti

Π be the nodes and matching weights ρ be the
edges, which is defined for each frame t,

ρ(Ti
A, Tj

B ; t) =

{
e−λs(Ti

A,Tj
B) t ∈ η(i, j)

0 otherwise
, (13)

where λ > 0 is a parameter controlling the slope of the
exponential.

The objective is to maximize the total weight,

h(t) =
∑

i

ρ(Ti
A, g(Ti

A); t), (14)

(a) (b)

Figure 2. The simulation settings. (a) N particles drifting in a
bounding unit cube with a limited velocity and acceleration, are
captured by a pair of virtual video cameras. (b) A tolerance width
ε is set to accept the distortion caused by lens and feature detection
errors.

subject to the constraint that the matching is one-to-one,
where g(T i

A) denote the resultant match of T i
A.

We add “dummy” nodes to each trajectory set with a con-
stant weight εd. In this case, a trajectory will be matched to
a “dummy” whenever there is no true matching available at
higher weight than εd, which happens when the true match-
ing is out of the image plane of the other camera, or it is
an outlier. Similarly, since the input to the algorithm should
be a square weight matrix, “dummy” nodes are added to the
smaller trajectory set.

Notice that, in Equation (13), the matching weight relat-
ing to a trajectory with time-span out of the currently con-
sidered frame t is set to zero, i.e., they are ignored and can
be extracted from the node set before running the algorithm.
In addition, the number of edges E can be reduced by hold-
ing a small number of potential matching candidates with
high weights, which may sacrifice the matching accuracy a
little.

This matching process can be solved in O(V 2E)
time using modified Bellman-Ford algorithm, or in
O(V 2log(V ) + V E) time with the Dijkstra algorithm.

5. Experiments

The effectiveness and performance of the proposed Rel-
ative Epipolar Motion (REM) method is to be tested by a
simulation and several real-world 3D reconstruction tasks.
The imaging system includes two synchronized digital
video cameras operating at the 800 × 600 resolution and
25Hz frame-rate, and an LCD projector working at the
1024 × 768 resolution. For camera geometric calibration,
Zhang’s method [21] is used with a printed chessboard pat-
tern 37.5cm × 37.5cm pasted on a flat acrylic sheet.
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Figure 3. The result of the simulation. (a) In the ideal case with zero distortion, given different number of particles, the proposed REM
method shows good performance while the CMR (correct-matching-rate) using standard matching method decreases rapidly. (b) Under a
5% projection distortion, both the two motion clues REM(s1), REM(s2) perform better than the standard method, and their combination
REM(s) performs even better. (c) Under a 5% projection distortion, for 200 particles, the longer the length of tracked trajectories, the
better the performance of REM method.

5.1. Simulations

This simulation is to evaluate the correspondence es-
tablishment ability of the proposed method. The classi-
cal matching method based on single image pairs using the
epipolar constraint is implemented for comparison.

As shown in Figure 2(a), the scene contains N particles
drifting in a bounding unit cube. Each particle pi is initiated
at a random location in the cube, with a random starting
velocity vi

0 and a small random acceleration ai(t) at each
time step t,

vi
0 ∼ N (0, 0.05I) ai(t) ∼ N (0, 0.001I), (15)

where x ∼ N (µ,Σ) denotes that x obeys a normal random
distribution with mean µ and covariance Σ. The particle
rebounds when hitting the walls.

The scene is captured by two virtual video cameras at
resolution of 800 × 600, i.e., the particles are perspectively
projected and quantized onto the image planes of the virtual
cameras. A random distortion after the projection is applied
to simulate the inaccuracy caused by uncalibratable lens,
retina distortions and feature detection errors, as shown by
Figure 2(b), where large distortions require a large tolerance
width ε in Equation (8,12).

In the above setting, the projected feature points are
moving at a speed no more than 4 pixels per frame. During
tracking of the feature trajectories, if more than two feature
points move too close (less than 8 pixels), the trajectory is
divided to eliminate tracking ambiguity.

We record a video sequence of 200 frames and the vari-
ous number of particles N ranges from 100 to 800.

The first set of simulations is in the ideal case with no
projection distortion. Table 1 shows the number of tracked
trajectory pieces on the two rectified image planes with their
average length (only trajectories with length ≥ 5frames

Table 1. The number of tracked trajectories and their average
length given different number N of points. Only trajectories with
length ≥ 5frames are recorded.
N 100 200 300 400 500 600 700 800
nA 254 698 1391 2213 3297 4314 5489 6594
nB 241 725 1384 2218 3288 4331 5535 6555
l 79.2 54.6 41.1 33.3 27.4 24.4 21.9 20.1
N : Number of particles in the scene.
nΠ : Number of tracked trajectories on the projection plane Π. (Π = A|B)
l : The average length of trajectories.

are considered). Figure 3(a) is the result represented in
correct-matching-rate (CMR) of the proposed REM method
using motion clue #1 (score s1) as compared to standard
matching method using only epipolar constraint consider-
ing single image pairs.

Then, we test the performance of the methods given a
considerable distortion of 5%, which means a tolerance
width of ε = 30 pixels is required. As shown in Fig-
ure 3(b), the proposed REM method using both the motion
clue #1 and #2 performs better than the standard match-
ing method, and the REM method using integrated score
(s) performs the best.

Third, the effect of the trajectory length is tested. Given
5% distortion, we fix the number of particles N = 200,
and set the upper limit of the length of tracked trajectory
pieces from 1 to 50. As shown in Figure 3(c), the CMRs
using REM method with motion clues #1, #2, and the both
increase with the length of trajectories. At the extreme case
when all length of trajectories are limited to 1, the proposed
REM method reduces to standard matching method.

5.2. A Non-Rigid Waving Optical Fiber Flower

This experiment evaluates the ability of the proposed
method in establishing correspondence for the reconstruc-
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Figure 4. The reconstruction of an non-rigid optical fiber flower. (a) The experiment setting. (c) A sample captured image where more than
200 bright-spots are detectable. (b) The matching results of the 1st frame using the proposed REM method shown in rectified image pair,
where a pair of rectangles in the same color represents a resultant correspondence. (d) Reconstructed depth result from top-view (red to
blue ↔ near to far). (e) Reconstructed depth result from left-view. (f) Reconstruction result of Frame 1-10 from top-view, where the fiber
flower is rotating. (g) Reconstruction result of Frame 191-230 from top-view, where the fiber flower is waving wildly.

tion of real-world drifting particles. Figure 4(a) shows the
setting. A flexible waving optical fiber flower illuminated
from the bottom is captured by a pair of calibrated cameras.
Figure 4(c) is a sample captured image where more than
200 bright-spots at the end of optical fibers can be detected
as salient features. The task is to locate the 3D positions of
these moving spots over time.

The scene is captured for 256 frames with the flower
waving. Each bright spot takes up an average region of 4
pixels in radius on the captured image. The tolerance width
of the epipolar line is set to 5 pixels.

Classical matching methods considering only image
pair at one time instance fail to establish the correspon-
dence since more than one bright-spots appear on almost
every epipolar line width. Smooth assumptions and area-
correlation are also non-applicable in this situation. The
proposed REM method offers good performance. Figure
4(b) shows the result of the 1st frame pair using REM
method, where the image pair is rectified and each pair of
rectangles in the same color representing a resultant cor-
respondence. Figure 4(d) 4(e) are the reconstructed depth
map looking from top and left. Figure 4(f) is the recon-
structed results of Frame 11-20 looking from top during
which the optical fiber flower is rotating. Figure 4(g) is the
reconstructed results of Frame 191-230 looking from top,
where the flower is waving wildly.

5.3. A Waving Flag

This experiment is to reconstruct a waving flag making
use of the trackable features from repetitive natural texture.
The proposed method works in the passive mode.

The flag contains regular patterns with trackable feature
points (corners) on the surface, waving in wind. A video
sequence of 256 frames is captured. Figure 5(a) shows the
rectified [7] 1st frame pair. It is difficult for existing algo-
rithms, even for a human, to identify the correspondence
based only on this one-shot frame pair, where a small tuck
on the surface pointed by arrows indicates the underlying
true correspondence. The matching and reconstruction re-
sult by dynamic programming based fusion technique[6] is
shown in Figure 5(b). It can be seen that it did not work for
this situation.

For the proposed REM method, we set the toleration
width ε to 5 pixels. Although many feature points along
an epipolar line are not distinguishable for matching in the
1st frame, these points will go to separate epipolar line over
time while the surface deforms, and the proposed method
uses this information to establish correct correspondence.
Figure 5(c) is the successfully reconstructed mesh for the
7th frame using the proposed method. Figure 5(d) and 5(e)
are another two frames (19th and 37th) reconstructed by the
proposed method rendered with original and new texture.



(a) (b) (c) (d) (e)

Figure 5. The reconstruction of a piece of deforming flag waving in wind. (a) Rectified 1st frame pair. A small tuck pair pointed by the
arrows indicates the underlying true matching. (b) The reconstruction result by dynamic programming based fusion. (c) The mesh of the
7th frame reconstructed using the proposed method. (d)(e) Another two frames (19th and 37th) reconstructed by the proposed method
rendered with original and new textures.

(a) (b) (c) (d) (e) (f)

Figure 6. The reconstruction of a gesturing hand by projecting active particle-like pattern. (a) The active particle pattern in which each
column moves vertically and independently. (b) The source image captured by the left camera at 1st frame. (c)(d) The reconstructed point
cloud of 1st and 10th frame shown in depth map. (e) Another source image at frame 370th with fingers opened. (f) The reconstructed
point cloud of 370th frame.

5.4. A Gesturing Human Hand

This experiment shows an alternative way to reconstruct
textureless surfaces by projecting active particle-like pat-
terns. The scene surface can either be static or dynamic.

The active particle pattern is designed to possess two
properties: (1) It creates independent relative epipolar mo-
tion for each particle; (2) The particles do not overlap dur-
ing the motion so that they can be easily tracked. Figure
6(a) is a sample pattern projected on a flat sheet, where each
column of particles independently moves a vertical step ran-
domly chosen from {−1, 0, 1} pixel at each time. Thus, af-
ter tracking n frames, it rarely happens that two particles
reamin on the same epipolar lines over the whole time span.

The advantages of the active particle-like pattern as com-
pared to traditional structured light of color strip patterns
are: (1) Compared to color-coded patterns, it is less affected
by the surface reflection properties since no recognition of
the color is required; (2) Compared to non-coded patterns,
it is more reliable when the scene is complex with occlusion
and isolated surfaces, since it does not use smooth and order
consistency assumptions in matching.

The target human hand deforms over a time span of 512
frames. Figure 6(b) is one captured image of the 1st frame.
Figure 6(c)6(d) are the reconstructed point cloud of 1st and
10th frame shown in depth map. Figure 6(e) is another cap-
tured image with five fingers opened. Figure 6(f) is the point

cloud looking from a different viewpoint.

6. Discussions

We now discuss several characteristics of the proposed
REM method.

• Motion clues provide essential information for corre-
spondence establishment. Two scene particles may happen
to coincide on the same epipolar line, leading to correspon-
dence ambiguity. However, the probability of two features
that remain unmatchable after tracking n frames tends to be
low since it rarely happens that two moving particles remain
on the same epipolar line during the whole time span if they
are not strictly dependent.

• Tracking failures do not harm too much to the REM
method. The proposed REM method matches trajectories
based on motion clues as well as local texture features (if
available). If tracking of trajectories fails, i.e. trajectories
are of length equal to one frame, either because of the scene
moving too fast or occlusion of features being severe, the
REM method would reduce to traditional feature-to-feature
matching.

• Static scenes can be reconstructed with a moving
stereo-rig. For the reconstruction of completely static
scenes, or when the motion is too small to provide enough
relative epipolar motion information, an alternative imple-
mentation is to fix the calibrated camera pair onto a stick.



The relative epipolar motion of features can then be created
by moving (rotating) the camera stick, which equals to the
scene moving while fixing the cameras. A little swing of
the stick creates significant relative epipolar motion infor-
mation.

• Colored particle-like active pattern is an option. Exper-
iment 5.4 shows an example to use only the relative epipo-
lar motion clue by projecting mono-colored active particle-
like pattern, however, if the surface reflectance properties
is unanimous, Bayer-like pattern with more than one color
could be applied, which both helps for trajectory tracking
and matching.

• Trinocular and multi-view are supported. The pro-
posed REM method can be extended to stereo settings using
multiple calibrated cameras. The motions of features rela-
tive to epipolar lines of each pair of cameras collectively
help to determine the correct correspondence.

7. Conclusion

We have developed an approach and an experimental
system targeting the correspondence problem in binocu-
lar stereo setting for 3D dynamic scene reconstruction.
The proposed method utilizes the relative epipolar motion
of tracked features, offering a remarkable correspondence
matching performance in reconstructing dynamic scenes
containing trackable but undistinguishable features such as
scenes containing large amount of drifting particles, which
cannot be solved by using structured light and local tex-
ture information. The proposed method is applicable also
to surface reconstruction in passive mode relying on repet-
itive natural textures with trackable but undistinguishable
features, and in active mode by projecting particle like ac-
tive patterns.
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