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Abstract

This paper points out and analyzes the advantages and drawbacks of the Near-
est Feature Line (NFL) classifier. To overcome the shortcomings, a new feature
subspace with two simple and effective improvements is built to represent each
class. The proposed method, termed Rectified Nearest Feature Line Segment (RN-
FLS), is shown to possess a novel property of concentration as a result of the added
line segments (features), which significantly enhances the classification ability. An-
other remarkable merit is that RNFLS is applicable to complex tasks such as the
two-spiral distribution, which the original NFL cannot deal with properly. Finally,
experimental comparisons with NFL, NN(Nearest Neighbor), k-NN and NNL (Near-
est Neighbor Line) using both artificial and real-world datasets demonstrate that
RNFLS offers the best performance.
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1 Introduction

Nearest Feature Line (NFL) [1], a newly proposed nonparametric classifier, has received

considerable attention in the pattern classification field. It attempts to enhance the

representational capacity of a sample set of limited size by using the lines passing through
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each pair of the samples belonging to the same class. Simple yet effective, NFL shows good

performance in many applications, including face recognition [1] [2], audio retrieval [3],

image classification [4], speaker identification [5] and object recognition [6]. The authors

of NFL explain that a feature line provides information about the possible linear variants

of two sample points not covered by themselves.

On the other hand, the feature lines may produce detrimental effects that lead to

increased decision errors under certain conditions, limiting its further potential. The

authors of [7] pointed out one of the drawbacks – extrapolation inaccuracy, and proposed

a solution called Nearest Neighbor Line (NNL). The extrapolation inaccuracy, as we

will analyze in this paper, may cause serious problems for classification tasks in a low

dimensional feature space, although it makes limited harm when the dimensions become

high. Due to this shortcoming, NFL is not widely applicable to classification tasks in

a low dimensional feature space. Thus, a more general method taking advantage of the

powerful feature lines of NFL while avoiding this type of drawback is desirable.

Another drawback of NFL is interpolation inaccuracy. It arises when one class ω1

has multiple clusters and between two of them appears the area of another class ω2.

Distributions of a complex shape (two-spiral problem for example) often fall into this

category, where, by the original NFL, the interpolating parts of the feature lines of class

ω1 break up the area of class ω2, severely damaging the decision region. A similar problem

happens in feature midpoints [8], in which the generalized feature midpoint of two sample

points of the same class may fall into the territory of other classes, leading to inappropriate

decisions.

In this paper, a new nonparametric classification method, Rectified Nearest Feature

Line Segment (RNFLS), is proposed that overcomes both of the above-mentioned draw-

backs and significantly improves the performance of NFL. The original NFL can concep-

tually be viewed as a two-stage algorithm – building representational subspaces for each

class and then performing the nearest distance classification. We focus mainly on the first
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stage. To overcome extrapolation inaccuracy, Nearest Feature Line Segment subspace

(NFLS-subspace) is developed. Different from NNL, the proposed solution still keeps the

attractive NFL characteristic that linearly expanding the representational capacity of the

limited sample points. To overcome the interpolation inaccuracy, the “territory” of each

sample point and each class is defined, and we obtain Rectified Nearest Feature Line Seg-

ment subspace(RNFLS-subspace) from NFLS-subspace by eliminating those feature line

segments trespassing the territory of other classes. As a result, RNFLS works well for all

shapes of sample distributions, which is a significant improvement.

Another remarkable advantage of the RNFLS method is that the added line segment

features make the initial sample distribution more concentrated. It is demonstrated in

this paper that the concentration property significantly enhances the classification per-

formance in overlapping areas of two or more classes. An example is the classification

problem with two classes taking the same Gaussian density but different distribution

centers (means). We show that the decision boundary created by RNFLS gets closer to

the one built by using the optimal Bayesian rule, bringing the correct classification rate

higher. Comparisons with NN, k-NN, NFL, NNL using artificial and real-world datasets

demonstrate that the proposed RNFLS method offers remarkably superior performance.

The main contributions of this paper include,

• Pointing out and analyzing the advantages and drawbacks of the original NFL

method.

• Evaluating the detrimental effects of extrapolation inaccuracy in feature space of

low and high dimension.

• Proposing the RNFLS classifier to improve NFL by overcoming the drawbacks.

• Analyzing the concentration property of NFLS-subspace.
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2 Background

2.1 The Nearest Feature Line Method

The Nearest Feature Line (NFL) [1] method constructs a feature subspace for each class,

consisting of the straight lines passing through every pair of the samples belonging to that

class. The straight line passing through samples xi, xj of the same class, denoted by xixj ,

is called a feature line of that class. Let Xω = {xω
i |1 ≤ i ≤ Nω} be the set of Nω samples

belonging to class ω. A number Kω = Nω(Nω − 1)/2 of feature lines is then constructed

and all these Kω feature lines constitute the NFL-subspace to represent class ω, denoted

by Sω = {xω
i x

ω
j |1 ≤ i, j ≤ Nω, i �= j}, which is a subset of the entire feature space. If

there are m classes in the database, m NFL-subspaces will be constructed, containing a

total number Ntotal =
∑m

i=1 Kωi
of feature lines.

During classification, a query point q will be classified to class ω if q assumes the

smallest distance to Sω than to any other (m − 1) NFL-subspaces. The distance from a

feature point q to an NFL-subspace Sω, d(q,Sω), is the shortest distance from q to any of

the feature lines in Sω

d(q,Sω) = min
xixj∈Sω

d(q, xixj). (1)

The distance from a point q to an feature line xixj , d(q, xixj), is defined as

d(q, xixj) = min
y∈xixj

‖q − y‖ (2)

= ‖q − p‖ (3)

where y is a point in line xixj , ‖.‖ is some norm and p is the projection point of q onto

line xixj .

The projection point can be computed by

p = (1− µ)xi + µxj (4)

where

µ =
(q − xi).(xj − xi)

(xj − xi).(xj − xi)
. (5)
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The parameter µ reflects the relative position of p to the two endpoints xi and xj . When

0 < µ < 1, p is an interpolation point between xi and xj . When µ > 1, p is a “forward”

extrapolation point on the xj side. When µ < 0, p is a “backward” extrapolation point

on the xi side.

Take Fig.1 as an example, there are two classes in the entire feature space. Samples

x1, x2, x3, marked with “circle”, constitute class ω1, and samples x4, x5, marked with

“cross”, constitute class ω2. Solid straight lines show all the feature lines of the two

classes. Point q is the query, and p1, p2, p3, p4 are the projection points of q on feature

lines x1x2, x2x3, x1x3, x4x5 respectively. According to the NFL rule, the distance from q

to Sω1 is min{d(q, x1x2), d(q, x1x3), d(q, x2x3)} = d(q, x1x3) = ‖q − p3‖, and the distance

from q to Sω2 is min{d(q, x4x5)} = ‖q − p4‖. Since ‖q − p4‖ ≤ ‖q − p3‖, q is classified to

class ω2. In addition, the projection points p1, p3 are on the extrapolating parts of the

corresponding feature lines, while p2, p4 are on the interpolating parts.

Figure 1: An example to illustrate the NFL classification method. The feature points p1,
p2, p3 and p4 are the projections of query q on the feature lines x1x2, x2x3, x1x3 and x4x5

respectively.
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2.2 Motivations and Advantages

The authors of [9] report that NFL gives better performance in pattern classification

problems when the dimension of the feature space is high. This has been confirmed by

several independent studies [1], [3], [4], [5] and [9].

One explanation provided by [1] is that a feature line virtually provides an infinite

number of additional samples along the linear variance of a pair of sample points. When

there is linear relationship among the sample points, NFL shows an impressive improve-

ment.

Suppose that we have two classes of samples in a two-dimensional feature space as

shown in Fig.2(a). One such situation is to separate a bag of mixed fruits when there

are few samples(4 bananas and 4 apples). We have two features – the redness x, and

the number of pockmarks on the surface y. According to general knowledge, the redness

is very important for separating red apples from yellow bananas, while the number of

pockmarks does not contribute useful information. However, we may assume that the

two features are treated equally since the designer of the classifier has no prior knowledge

about the different nature of the two attributes.

Naturally, we expect a classifier to produce a hyperplane (a line perpendicular to axis-

x in this problem) separating the two classes. The NN rule, however, leads to decision

boundary that is not favorable, as shown in Fig.2(b). Another choice would be NFL, in

which the feature lines support the original samples as a complement, Fig.2(c), and the

decision boundary constructed by NFL, as shown in Fig.2(d), precisely match what we

expect, bringing superior classification results.

2.3 Shortcomings

NFL extends the samples of one class by adding straight lines linking each pair. A good

argument for doing this is that it adds extra information to the sample set. The extra

information, however, is a double-edged sword. When a straight line of one class trespasses
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(a) (b)

(c) (d)

Figure 2: (a)The sample distribution in two-dimensional feature space. (b)Decision
regions by NN rule. (c)The feature lines of each class constitute the NFL-subspace.
(d)Decision regions by NFL-classifier.

into the territory of another class, it will lead to increased error probability. There are

two types of trespassing, causing two types of inaccuracies: extrapolation inaccuracy and

interpolation inaccuracy.

2.3.1 Extrapolation Inaccuracy

In Fig.3, the query point q surrounded by four “cross” sample points lies in the territory

of the “cross” class, hoping to be classified into the “cross” class. But the extrapolating

part of feature line x1x2 makes the distance from q to x1x2 smaller. Thus, d(q,Scircle) <

d(q,Scross), and NFL will assign q the label “circle”, not “cross”. This is very likely to be

a decision error.

Further analysis of the extrapolation inaccuracy is presented in Section 4, where we will

show that the probability of a feature line of one class trespassing the area of another class

tends to zero when the feature space dimension is high. This means that extrapolation

inaccuracy can be ignored if the feature space dimension is large enough. In a feature
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Figure 3: An example to show extrapolation inaccuracy. The query q surrounded by
“cross”-samples is classified to “circle”-class because of the extrapolating part of the
nearest feature line x1x2. This is likely to be a decision error.

space of low dimension, however, it actually harms.

2.3.2 Interpolation Inaccuracy

Fig.4 shows an example to illustrate interpolation inaccuracy. We note that the samples

from class “circle” distribute as two clusters with the samples from class “cross” lying in

between, and feature lines such as x1x2 linking the two clusters of class “circle” trespass

the territory of class “cross”. The query q in the territory of class “cross” which should

have been labelled as “cross” is inappropriately classified to class “circle” by the NFL

rule because d(q, x1x2) is smaller than the distance from q to any feature lines of class

“cross”. This type of error occurrs because the territory of class “cross” is trespassed by

the interpolating part of feature lines of class “circle”.

The extrapolation and interpolation inaccuracies are serious drawbacks that limit the

applicability of NFL. The authors of [7] tried to reduce the extrapolation inaccuracy by

using Nearest Neighbor Line (NNL), where only one feature line linking the nearest two

sample points to the query is used to represent the class. This approach, while mitigating

the extrapolation inaccuracy, also reduces the classification ability of the original NFL.
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Figure 4: An example to show the interpolation inaccuracy. The query q surrounded by
“cross”-samples is classified to “circle”-class because of the interpolating part of feature
line x1x2, which probably causes a decision error.

In the following section we pursue a more systematic approach in which a new feature

subspace for each class is constructed to avoid both drawbacks. The original advantage

of NFL that linearly extending the representational capacity of the original samples is

retained in our method.

3 Rectified Nearest Feature Line Segment

In this section, we introduce the new method - Rectified Nearest Feature Line Segment

(RNFLS) - to improve NFL. The main difference between the two lies in the way of

constructing the feature subspace for each class. In the original NFL [1], the NFL-subspace

for class ωk is

Sωk
= {xixj |xi, xj ∈ ωk, xi �= xj}. (6)

To overcome the drawbacks described in the previous section, a two-step improvement is

developed, as shown in Fig. 5. Not only has it avoided the shortcomings, it also possesses

a remarkable property – concentration property – which generates new RNFLS features

(line segments), and consequently makes the resultant distribution more concentrated
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than the distribution of the original samples. This property significantly enhances the

classification ability for a wide range of applications.

Nearest Feature Line
(NFL)

Nearest Feature Line Segment
(NFLS)

Rectified Nearest Feature Line Segment
(RNFLS)

Step 1:

Using Feature Line Segment

Step 2: 

Rectifying NFLS-subspaces

Figure 5: RNFLS can be considered as augmented NFL with two improvement steps.

3.1 Using Feature Line Segment

To avoid extrapolation inaccuracy, we use line segments between pairs of the sample

points to construct a Nearest Feature Line Segment subspace (NFLS-subspace) instead of

the original NFL-subspace to represent each class. Let Xω = {xω
i |1 ≤ i ≤ Nω} be the set

of Nω samples belonging to class ω. The NFLS-subspace (S̃ω) representing class ω is

S̃ω = {x̃ω
i x

ω
j |1 ≤ i, j ≤ Nω}, (7)

where x̃ω
i x

ω
j denotes the line segment connecting the point xω

i and xω
j . Note that a

degenerative line segment x̃ω
i x

ω
i (1 ≤ i ≤ Nω), representing the original sample point

xω
i , is also a member of S̃ω.

If we consider each line segment as a set of feature points, S̃ω can also be viewed as a

point set. Thus the distance from a query point q to an NFLS-subspace S̃ω is defined as

d(q, S̃ω) = min
y∈S̃ω

‖q − y‖, (8)
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where ‖ · ‖ is some norm and y ∈ S̃ω ⊂ �n is a point. The query q is classified to class ωk

when d(q, S̃ωk
) is smaller than the distance from q to any other S̃ωi

(i �= k, 1 ≤ i ≤ m).

Since S̃ωk
is made up of line segments, Equ.(8) is equivalent to

d(q, S̃ωk
) = min

x̃ixj∈S̃ωk

d(q, x̃ixj) (9)

where

d(q, x̃ixj) = min
y∈x̃ixj

‖q − y‖. (10)

And to calculate d(q, x̃ixj), there are two cases. If xi = xj , the answer is simply the point

to point distance,

d(q, x̃ixi) = ‖q − xi‖. (11)

Otherwise, the projection point p of q onto xixj is located first by using Equ.(4) and

Equ.(5). Then, different reference points are chosen to calculate d(q, x̃ixj) according to

the position parameter µ. When 0 < µ < 1, p is an interpolation point between xi and

xj , so d(q, x̃ixj) = ‖q− p‖. When µ < 0, p is a “backward” extrapolation point on the xi

side, so d(q, x̃ixj) = ‖q − xi‖. When µ > 1, p is a “forward” extrapolation point on the

xj side, so d(q, x̃ixj) = ‖q − xj‖. Fig.6 shows an example.

3.2 Rectifying Nearest Feature Line Segment Subspaces

The next step is to rectify the NFLS-subspace to eliminate interpolation inaccuracy. Our

motivation is to have the inappropriate line segments removed from the NFLS-subspace

S̃ωk
for each class ωk,. The resulting subspace denoted by S̃∗

ωk
is a subset of S̃ωk

termed

Rectified Nearest Feature Line Segment subspace (RNFLS-subspace).

3.2.1 Territory

We begin with the definitions of two types of territories. One is sample-territory, Tx ⊆ �n,

that is the territory of a sample point x; the other is class-territory, Tω ⊆ �n, that is the

territory of class ω. Suppose the sample set X is {(x1, θ1), (x2, θ2), ..., (xm, θm)}, which
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Figure 6: Distance from a feature point to a feature line segment. The projection of the
query point q1 on x̃ixj is in the extrapolating part, so the nearest endpoint xi is chosen to
be the reference point for calculating the distance. The process is similar for q2. For query
q, d(q, x̃ixj) is the same as the distance in NFL since its projection is in the interpolating
part of x̃ixj .

means xi belongs to class θi. The radius rxk
of the sample-territory Txk

is defined as

rxk
= min

∀xi,θi �=θk

‖xi − xk‖. (12)

Thus,

Txk
= {y ∈ �n|‖y − xk‖ < rxk

}. (13)

It is not required that Txi
(1 ≤ i ≤ m) is a partition of �n. That is to say Txi

⋂
Txj

(xi �= xj)

may not be empty, and
⋃

1≤i≤m Txi
may not be the whole feature space �n.

The class-territory Tωk
is defined to be

Tωk
=

⋃
θi=ωk

Txi
, (xi, θi) ∈ X. (14)

In Fig.7, the points denoted by “circle” and “cross” represent the samples from two

classes. Each of the “cross”-points (y1, y2, y3) has its own sample-territory as shown by

the dashed circle. The union of these sample-territories is Tcross. Tcircle is obtained in a

similar way.
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Figure 7: The territory of “cross”-samples is shown in dashed circle. Their union con-
stitutes the territory of “cross”-class. The feature line segment x̃1x3 of “circle”-class
trespassing the territory of “cross”-class will be removed, while x̃1x2 will not.

3.2.2 Building RNFLS-subspace

For class ωk, its RNFLS-subspace S̃∗
ωk

is built from the NFLS-subspace S̃ωk
by having

those line segments trespassing the class-territories of other classes removed. That is,

S̃∗
ωk

= S̃ωk
\ Ũωk

, (15)

where ’\’ is the set minus operator, and

Ũωk
= {x̃ixj |∃ωy, ωk �= ωy ∧

∧x̃ixj ∈ S̃ωk
∧ x̃ixj ∩ Tωy �= φ}

= {x̃ixj |∃(xy, θy) ∈ X, x̃ixj ∈ S̃ωk
∧

∧ωk �= θy ∧ d(xy, x̃ixj) < rxy}. (16)

For example, in Fig.7, x̃1x3 /∈ S̃∗
circle because x̃1x3 ∩ Tcross �= φ. x̃1x2 ∈ S̃∗

circle because

x̃1x3 ∩ Tcross = φ and class “cross” is the only class different from class “circle”.

3.2.3 Classifying using RNFLS-subspaces

To perform classification using RNFLS-subspaces is similar to using NFLS-subspaces,

since the only difference between an RNFLS-subspace and an NFLS-subspace is S̃∗
ωk

=
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S̃ωk
\ Ũωk

, where, except for some removed line segments, S̃∗
ωk

is still a set consisting of

line segments. The distance measure from a query point to the RNFLS-subspace remains

the same.

4 Analyzing the Method

In this section, we analyze the proposed RNFLS method from two important viewpoints -

concentration property and the correlation between trespassing probability and the feature

space dimension. The concentration property is a remarkable advantage of RNFLS, which

significantly enhances the classification performance by generating new RNFLS features

that are more concentrated in distribution than the original samples of the corresponding

class. The second property shows the necessity for classification problems in low dimen-

sional feature space to eliminate the extrapolation and interpolation inaccuracies of NFL

by the two-step improvement of RNFLS, leading to better classification performance.

4.1 Analyzing the Concentration Property

In many real-world pattern recognition problems, samples from one class tend to scatter

around its central manifold due to systematic deviation and random noise. Two scattered

classes may overlap each other, causing decision errors. A method which is able to generate

features with a more concentrated distribution than the distribution of original samples

may improve the classification performance in the overlapping areas, leading to a higher

correct classification rate.

In the following analysis, we show the impressive concentration property of the pro-

posed RNFLS method using a simple case - a uniform distribution in two-dimensional

feature space. A further simplification is to show it in NFLS-subspace.

Proposition 1. Consider the NFLS-subspace of the class ω as shown in Fig.8, where the

sample points of class ω are uniformly distributed in disk D with radius R and center O.

Let M(a, r) (a ≤ R) be a round area with an arbitrarily small radius r and distance a
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Figure 8: Calculating Nω
a for a uniform sample point density on a disk.

from O, and Nω
a be the probability of a randomly chosen feature line segment of class ω

passing through M(a, r). Given an arbitrarily small r, Nω
a is decreasing with increasing

a.

Proof. We calculate Nω
a in a polar coordinate system by choosing the center of M(a, r)

as pole and
−−→
OM as polar axis. For a line segment X̃Y passing through M(a, r), given

one endpoint X(ρ, θ) in D, the other endpoint Y has to appear in the corresponding

�M1M2HG, as shown in Fig.8. Thus we obtain

Nω
a =

∫∫
D

1

πR2
A(ρ, θ)ρdρdθ

=

∫ 2π

0

∫ |MC|

0

1

πR2
A(ρ, θ)ρdρdθ (17)

where A(ρ, θ) is the probability that the randomly generated endpoint Y appears in

�M1M2HG.
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We can calculate A(ρ, θ), |MC|, |MG| and |GH| by

A(ρ, θ) =
1

πR2

[1
2
(2r + |GH|) · |MG|+ o(r)

]
(18)

|MC| =
√
R2 − a2 sin2 θ − a cos θ (19)

|MG| =
√
R2 − a2 sin2 θ + a cos θ (20)

|GH| =
2r(|MG|+ ρ)

ρ
(21)

According to Equ.(17), (18), (19), (20) and (21),

Nω
a =

2r(R2 − a2)

(πR2)2

∫ 2π

0

√
R2 − a2 sin2 θ · dθ + o(r). (22)

Since r → 0, o(r) is ignored. Thus, for a fixed r, Nω
a gets smaller when a gets larger.

Proposition 1 indicates that the distribution of line segments in the NFLS-subspace

is denser at the center than at the boundary if the original sample points distribution is

under a uniform density. A Gaussian distribution can be viewed as a pile-up of several

uniform distribution disks with the same center but different radius. It is conjectured

that this concentration property also applies to the Gaussian case.

Consider a given location whose distance to the center is a. The relationship between

ρω(a) and Nω
a can be expressed as

Nω
a = k(a) · ρω(a), (23)

k(a) is a positive valued function decreasing on a.

Proposition 2. Following the above analysis, we duplicate m copies of class ω with

different class centers µi, denoted by ω1, ω2, ..., ωm. In the m-class classification problem,

given a small round area M in the overlapping area of these m classes, the probability of

a randomly chosen query x appeared in M being classified to class ωk, PNFLS(ωk|x), is

PNFLS(ωk|x) =
Nωk

ak∑m
i=1 N

ωi
ai

(24)

where ai = ‖x− µi‖ is the distance from x to the distribution center of ωi.



Rectified-Nearest-Feature-Line-Segment 17

Proof. The location of each feature line segment of these m classes passing through M

is random, therefore, PNFLS(ωk|x) is determined by the portions of feature line segments

of class ωi(i = 1, 2, ..., m) that pass through M . On the other hand, since the m classes

possess an equal prior probability andNωk
ak

represents the probability of a randomly chosen

feature line segment of class ωk passing through M , the proposition is obvious.

Figure 9: Two-category problem of the same Gaussian distribution. After the concentra-
tion of the probability density, the conditional risk RNFL will be smaller than RNN .

To show the benefits of density concentration, suppose there are two Gaussian dis-

tributions of the same variance but different centers (means) in two-dimensional feature

space. Projected on the straight line linking the two Gaussian centers, the probabil-

ity density is shown in Fig.9, where σ is the variance of the projected one dimensional

Gaussian density, and µ1, µ2 are the projected centers, satisfying

µ1 + µ2 = 0 (µ1 < 0). (25)

Consider a query point x0 (x0 > 0). For i=1,2, let

Qi(x) = P{x ∈ ωi|x} (26)

ai = ‖x0 − µi‖ (27)

ρωi
(x) =

1√
2πσ

exp{−1

2
(
x

σ
)2}. (28)



Rectified-Nearest-Feature-Line-Segment 18

We obtain

Qi(x0) =
ρωi

(ai)

ρω1(a1) + ρω2(a2)
(i = 1, 2) (29)

a1 > a2. (30)

On the other hand, consider a small round area M with radius r centered at x0. Let N
ωi
ai

be the probability of a randomly chosen feature line segment of class ωi passing through

M (i = 1, 2). If we denote them as Equ.(23),

Nω1
a1

= k1 · ρω1(a1) (31)

Nω2
a2

= k2 · ρω2(a2), (32)

from Equ.(23), (28), (30), (31) and (32),

k1 < k2. (33)

According to the NN rule, a query x0 is classified to class ω if the nearest sample point

x′0 belongs to ω. An error occurs when x0 ∈ ω1 but x′0 ∈ ω2 or x0 ∈ ω2 but x′0 ∈ ω1. If

the sample distribution is not sparse, P{x′0 ∈ ω|x′0} can be approximately replaced by

P{x0 ∈ ω|x0}. Therefore, the conditional risk RNN given x0 is

RNN(x0) = P{x0 ∈ ω1 ∧ x′0 ∈ ω2} ∨

P{x0 ∈ ω2 ∧ x′0 ∈ ω1}

= 2Q1(x0)Q2(x0). (34)

Let C(x0) be the classification result of query x0 by NFLS,

RNFLS(x0) = P{x0 ∈ ω1 ∧ C(x0) = ω2} ∨

P{x0 ∈ ω2 ∧ C(x0) = ω1}

= Q1(x0)PNFLS(ω2|x0) +

Q2(x0)PNFLS(ω1|x0). (35)
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According to Equ.(24), (28), (29), (31), (32), (33), (34) and (35), we conclude

RNFLS(x0) < RNN (x0). (36)

This concentration property can be extended to classification problems in which the

overlapping is caused by noise scattering of two or more classes under similar distribution

but different centers. It reverses the scattering and achieves a substantial improvement.

4.2 Trespassing Probability and Feature Space Dimension

The following example gives the result that the extrapolation inaccuracy of NFL makes

limited harm in high dimensional feature space but causes severe problems in a feature

space of low dimension. Thus, it is necessary to design solutions such as RNFLS to elim-

inate these inaccuracies for its applicability on classification problems in low dimension.

Consider, in an n-dimensional feature space, a two-category problem in which p(x|ω1)

and p(x|ω2) are the prior densities of the two classes in region D1 and D2 respectively

(D1, D2 ⊆ �n). To randomly generate a feature line l from the NFL-subspace of class ω1

is equivalent to firstly ordering all the sample points of class ω1, so that they form a chain,

and then randomly picking up two sample points xa, xb from class ω1 ensuring xa ≺ xb

(if not, do it again), and then to obtain l by linking xa and xb. The feature line l may

or may not trespass D2. The probability, Pn, that l trespasses D2 in the n-dimensional

problem is

Pn =

∫
D1

p(xa|ω1) ·
∫

A(xa)
p(xb|ω1)dxb∫

B(xa)
p(xb|ω1)dxb

· dxa (37)

where A(xa) and B(xa) are

A(xa) = {xb|xb ∈ D1 ∧ xa ≺ xb ∧ xaxb ∩D2 �= φ} (38)

B(xa) = {xb|xb ∈ D1 ∧ xa ≺ xb}. (39)

An important property is that Pn will asymptotically come to 0 when n grows sufficiently

large. The following analysis explains this property.
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(a)

(b)

Figure 10: The two-cube problem to estimate the upperbound of the extrapolation in-
accuracy. (a)A two-dimensional case. (b)The same model in three-dimensional feature
space.

Suppose we have a non-overlapping two-category problem [10] in an n-dimensional

feature space, where both p(x|ω1) and p(x|ω2) assume uniform densities on hypercube

D1 and D2. The side length of each cube is r, all the edges are parallel to one of the

coordinate axis, and D2 is considered as a shifted version of D1 along coordinate axis v0

with distance d, satisfying

d > r. (40)
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We give the sequence number to the sample points in D1 by sorting them using their

geometrical positions, that is to specify the projection of one sample point on v0, v1 as

the first and second sort key respectively. Fig.10(a) shows a two-dimensional case. Thus,

p(x|ω1) = 1/V§[D1], for x ∈ D1 (41)

Pn =
1

V[D1]

∫
D1

V[A(xa)]

V[B(xa)]
· dxa. (42)

To calculate the upper-bound of V[A(xa)]/V[B(xa)], a small bounding box will be con-

structed. The process begins with n = 2, where region A(xa) is a triangle, as shown

in Fig.10(a). The corresponding bounding box is a rectangle denoted by G(xa). In the

two-dimensional space,

V[G(xa)] = a · h1 , xa ∈ �2. (43)

We see that A(xa) is in G(xa), so

V[A(xa)]

V[B(xa)]
<

V[G(xa)]

V[B(xa)]
. (44)

When n = 3, consider a plane α1 containing xa, parallel to coordinate axis v0, v1 and

perpendicular to v2, shown in Fig.10(b). If a feature line l of class ω1 trespasses D2, the

projection of l on plane α1 must trespass the projection of D2 on plane α1. So when

xa is given, the projection of A(xa) in plane α1 is in a triangle region, and a rectangle

G1(xa) whose edges are a and h1 is large enough to cover it. Similarly, in the other degree

of freedom, consider plane α2 parallel to coordinate axis v0, v2 and perpendicular to v1.

Another rectangle G2(xa) whose edges are a and h2 is produced. After that, we construct

the three dimensional bounding box G(xa) as the region, which is precisely the largest

union of points in R3 whose projections on the above two planes are in G1(xa) and G2(xa).

So Equ.(44) is also satisfied in three dimensional case, where

V[G(xa)] = a · h1 · h2 , xa ∈ �3. (45)

§V [Ψ] is the volume of region Ψ
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In n-dimensional case, an n-dimensional bounding box G(xa) is built, and

V[G(xa)] = a ·
n−1∏
i=1

hi , xa ∈ �n. (46)

From Fig.10(a), we obtain

hi ≤
r2

d
, (1 ≤ i < n). (47)

Since

V[B(xa)] = a · rn−1, (48)

by Equ.(46), (47) and (48),

V[G(xa)]

V[B(xa)]
= (

r

d
)n−1. (49)

According to Equ.(40), (42), (44) and (49), we have

lim
n→∞

Pn = 0. (50)

As a concrete example, let p(x|ω1) be the uniform density function on hypercube D1, and

consider d = 2r, 3r, 4r, 8r respectively. The trespassing probability Pn of a feature line

in n-dimension problem is shown in Fig.11. Since the probability drops sharply with the

dimensionality, it is reasonable to ignore the extrapolation inaccuracy if the classification

task is in high dimension.

When the above two-category-problem is in a space of low dimensionality, the expected

number of feature lines of class ω1 trespassing D2, however, will be comparable with the

number of feature lines of class ω2 so that the area of class ω2 will be carved up by large

amounts of feature lines of both class ω1 and ω2. Thus, a query that appears in D2

which should have been classified to class ω2 will have a considerable probability to be

mistakenly labelled as class ω1. This is a significant shortcoming because many other

classifiers including Nearest Neighbor (NN) can easily achieve the correct classification

rate of 100% for this non-overlapping distribution.
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Figure 11: The extrapolation trespassing probability Pn, that is the probability of a
feature line of class ω1 trespassing the territory of class ω2, is decreasing on the feature
space dimension n.

4.3 Computational Complexity

For a given sample size n, the number of feature line segments in RNFLS-subspace is

upper bounded by n2. Thus, the proposed RNFLS method takes the same computation

complexity of O(n2) as NFL for classifying one query, and in addition, since some of

feature line segments are removed in the rectification process as described in Section 3.2,

RNFLS usually works faster than NFL. On the other hand, the advantages of RNFLS

in rectifying the representational subspace and concentrating the distribution come at

a cost. The expense is the longer computation time-complexity O(n3) in preparing the

RNFLS-subspace. However, preparing RNFLS-subspace is typically an offline, one-time

operation, the increased time complexity is not a big issue.

5 Experiment Results and Discussions

The performance of the RNFLS method is compared with four classifiers - NN, k-NN,

NFL and NNL - using two artificial datasets as well as a group of real-world benchmarks

widely used to evaluate classifiers. The results on these datasets, representing various

distributions and different dimensions, demonstrate that RNFLS possesses remarkably
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stronger classification ability than the other methods.

5.1 The Two-Spiral Problem

The two-spiral problem was originally used to test multi-layered neural classifiers [11],

[12], [13], and is now included by many authors as one of the benchmarks for evaluation

of new classification algorithms. The two-spiral curves in a two-dimensional feature space

is described as follows

spiral1 :
{ x = kθ cos(θ)
y = kθ sin(θ)

spiral2 :
{ x = kθ cos(θ + π)
y = kθ sin(θ + π)

(51)

where θ ≥ π/2 is the parameter. If the probability density of each class is uniform along

the corresponding curve, an instance of such distribution is shown in Fig.12(a).

In our experiment, Gaussian noise is added to the samples so that the distribution

regions of the two classes may overlap each other, as shown in Fig.12(b). If the prior

distribution density were known, according to the optimal Bayesian rule, Fig.12(d) should

be the optimal decision boundary. This, however, can hardly be achieved because the only

information we have is a finite number of sample points.

The original NFL is not a good choice for this classification problem. We may imagine

how fragmented the decision region is carved up because of its interpolation and extrapo-

lation inaccuracy. The decision boundary created by NN rule is shown in Fig.12(e). When

it comes to RNFLS, Fig.12(c) is the RNFLS-subspaces and Fig.12(f) is the correspond-

ing decision boundaries. Compared with the decision boundary created by NN, RNFLS

performs much better where the boundary is smoother and some incorrect regions caused

by isolated noise points is smaller. This significant enhancement can be attributed to the

concentration property.

As a concrete test, let θ ∈ [π/2, 3π] and the Gaussian noise is of a variance σ = 1.7

and an expectation µ = 0. We generate 500 points according to this distribution, where

250 belong to class ω1 and the other 250 belong to class ω2. Then, half of them are
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(a) (b) (c)

(d) (e) (f)

Figure 12: (a)Two-spiral problem. (b)Two-spiral problem with Gaussian noise.
(c)RNFLS subspaces. (d)Bayesian decision boundary. (e)NN classification result.
(f)RNFLS classification result.
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randomly chosen to form the sample set and the remaining half constitute the test set.

The classifiers, NN, k-NN(k=3), NFL, NNL and RNFLS, are applied to this task for 10

times, and Table 1 shows the results.

Table 1: Performance evaluation on the two-spiral problem using NN, 3-NN, NFL[1],
NNL[7] and RNFLS. (CCR: correct classification rate, percentage)

Classifier CCR (average) CCR (min) CCR(max)
NN 83.2 80.4 85.3
k-NN(k=3) 85.3 83.2 87.3
NFL 53.2 49.8 56.7
NNL 72.4 69.0 78.0
RNFLS 86.1 84.0 88.2

Table 2: CCR(%) for NN, 3-NN, NFL, NNL and RNFLS on the real-world datasets

Dataset #Classes #Instances #Attributes NN 3NN NFL NNL RNFLS

1 hepatitis 2 80 19 92.5 91.3 91.3 76.3 91.3
2 iris 3 150 4 94.7 94.7 88.7 94.7 95.3
3 housing 6 506 13 70.8 73.0 71.1 67.6 73.5
4 pima 2 768 8 70.6 73.6 67.1 62.8 73.0
5 wine 3 178 13 95.5 95.5 92.7 78.7 97.2
6 bupa 2 345 6 63.2 65.2 63.5 57.4 66.4
7 ionosphere 2 351 34 86.3 84.6 85.2 87.2 94.3
8 wpbc 2 194 32 72.7 68.6 72.7 54.1 75.8
9 wdbc 2 569 30 95.1 96.5 95.3 64.0 97.2
10 glass 6 214 9 70.1 72.0 66.8 65.4 72.0

5.2 Two Gaussian Distributions

Of the various distributions that have been investigated in the literature, Gaussian density

has received great attention. Suppose that there are two classes ω1 and ω2 in a two-

dimensional feature space according to the density functions,

pω1(x, y) =

{
1√

2πσ(b−a)
exp

[
− 1

2

(
x
σ

)2]
, a ≤ y ≤ b

0 , otherwise

pω2(x, y) =

{
1√

2πσ(b−a)
exp

[
− 1

2

(
x−d
σ

)2]
, a ≤ y ≤ b

0 , otherwise

(52)
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In the experiment, given the distance d between the two Gaussian centers, 200 points

are generated for each of the two classes based on the above density function. The sample

set is formed by randomly selecting out half of the points from each class, and the test set

contains the remaining half. Experiments with different d are practiced, and the result

is shown in Fig.13. It shows that RNFLS always reaches the top performance among

the five classifiers, NN, 3NN, NFL, NNL, RNFLS, and it achieves a correct classification

rate(CCR) closest to the optimal Bayesian rule.
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Figure 13: The CCR of the two-Gaussian distribution in two-dimensional feature space.
The test is run using different classification methods under different distance of the two
Gaussian centers.

The above experiment results show that the original NFL and NNL methods are not

suitable in this situation. From the analysis of the extrapolation inaccuracy in Section 2

and 4, it is seen that the main reason lies in the fact of the large areas of the territory

of one class being carved up by the extrapolating part of feature lines of other classes in

a low dimensional feature space. When it comes to higher dimensions, as confirmed by
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related work [9], this type of error is greatly mitigated.

5.3 Real-World Classification Problems

We test the RNFLS classifier on a group of real-world datasets as listed in Table 2. All of

the datasets are obtained from the U.C. Irvine repository [14]. Since we do not deal with

the issue of missing data, instances with missing values are removed. And for the fairness

of the procedure, attributes of the instances are standardized (normalized) by their means

and standard deviations before submitted to the classifiers. The performance in CCR is

obtained using the leave-one-out [15] procedure.

It can be seen that RNFLS performs well on both two-category and multi-category

classification problems in both low and high dimensional feature spaces. This is encour-

aging since these datasets represent real-world problems and none of them is specially

designed to suit a specific classifier. Since one common characteristic of real-world prob-

lems is distribution scattering caused by noise, the concentration property of RNFLS

helps improving the correct classification rate.

6 Conclusions

This paper introduces a new feature subspace RNFLS to enhance the representational

capacity of the original sample points. RNFLS constitutes a substantial improvement to

NFL. It works well and its performance is independent of the distribution shape and the

feature-space dimension. In particular, we have shown that RNFLS is able to generate

an RNFLS feature distribution that is more concentrated than the initial distribution

of the sample points and offers a higher correct classification rates for a wide range of

classification applications.

Further investigation into RNFLS seems warranted. In the rectification process, it

would be helpful to define the territory of one class in detail, and to treat the trespass-

ing feature line segments more specifically, perhaps finding a way to cut off a part of a
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trespasser instead of eliminating the whole feature line segments. Also worth more inves-

tigation is the concentration property, which might be of great potential and appears a

good research direction.
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