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Abstract

We propose a novel approach to reduce spatially varying

motion blur using a hybrid camera system that simultane-

ously captures high-resolution video at a low-frame rate to-

gether with low-resolution video at a high-frame rate. Our

work is inspired by Ben-Ezra and Nayar [3] who introduced

the hybrid camera idea for correcting global motion blur for

a single still image. We broaden the scope of the problem

to address spatially varying blur as well as video imagery.

We also reformulate the correction process to use more in-

formation available in the hybrid camera system, as well

as iteratively refine spatially varying motion extracted from

the low-resolution high-speed camera. We demonstrate that

our approach achieves superior results over existing work

and can be extended to deblurring of moving objects.

1. Introduction

We present a novel approach to reduce spatially varying

motion blur in images or video. Our work is inspired by the

hybrid camera framework introduced by Ben-Ezra and Na-

yar [3, 4] in which a camera simultaneously captures a high-

resolution image together with a sequence of low-resolution

images that are temporally synchronized. In their works,

optical flow is derived from the low-resolution images to

compute the global motion blur of the high-resolution im-

age. With this computed global motion kernel, deconvolu-

tion is performed to correct blur in the high-resolution im-

age. These works clearly demonstrated that a (presumably

cheap) auxiliary low-resolution device with fast temporal

sampling could be coupled with a high-resolution device

for global motion deblurring.

Figure 1 illustrates the tradeoff between a high resolution

image captured at a low frame rate, and a low resolution

image captured at a high frame rate. For comparable levels

of scene exposure per pixel, the high resolution image re-

quires a longer exposure time and thus suffers from motion

blur. On the other hand, a short exposure suffices for the
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Figure 1. Tradeoff between resolution and frame rates. (a) Image

from a high resolution, low frame rate camera. (b) Image from a

low resolution, high frame rate camera.

low resolution image captured with larger sensor units, and

it is therefore sharp but lacking in detail.

Our paper re-visits this hybrid-camera idea, but ad-

dresses the broader problem of deblurring with spatially

varying motion blur. In addition, our work aims to achieve

improved deblurring performance by more comprehen-

sively exploiting the information available in the hybrid

camera system, including optical flow, back-projection con-

straints between low-resolution and high-resolution images,

and temporal coherency along image sequences. We also

introduce an iterative deblurring algorithm that refines the

estimated motion kernels in the deblurring process.

The central idea in our formulation is to combine

the benefits of both deconvolution and super-resolution.

Deconvolution of motion blurred, high-resolution images

yields high frequency details, but with ringing artifacts due

to lack of low-frequency components. In contrast, super-

resolution-based reconstruction from low-resolution images

recovers artifact-free low-frequency results that lack high-

frequency detail. We show that the deblurring information

from deconvolution and super-resolution are complemen-

tary to each other, and can be used together to elevate de-

blurring performance. In video deblurring applications, our

method furthermore capitalizes on additional deconvolu-

tion constraints that can be derived from consecutive video

frames. We demonstrate that this approach produces excel-

lent results in deblurring spatially varying motion blur. We

also present an extension of this work to moving objects,

and discuss possible future research directions.
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2. Related Work

Motion deblurring can be cast as the deconvolution of

an image that has been convolved with either a global mo-

tion point spread function (PSF) or a spatially varying PSF.

The problem is inherently ill-posed as there are a number of

unblurred images that can produce the same blurred image

after convolution. Nonetheless, this problem is well stud-

ied given its utility in photography and video capture. The

following describes several related works.

The majority of related work lies in traditional blind

deconvolution approaches that simultaneously estimate a

global motion PSF and the deblurred image. These meth-

ods include well-known algorithms such as Richardson-

Lucy [27, 21] and Wiener deconvolution [31]. For a survey

on blind deconvolution, readers are referred to [12]. These

traditional approaches often produce less than desirable re-

sults that include artifacts such as ringing.

A recent trend in motion deblurring is to either constrain

the solution of the deblurred image or to use auxiliary in-

formation to aid in either the PSF estimation or the decon-

volution itself (or both). Examples include work by Fergus

et al. [10], which used natural image statistics to constrain

the solution to the deconvolved image. Raskar et al. [25]

altered the shuttering sequence of a traditional camera to

be make the PSF more suitable for deconvolution. Jia [15]

used an extracted alpha mask of the blurred region to aid in

the PSF estimation.

Other recent approaches use more than one image to aid

in the deconvolution process. Bascle et al. [2] used a blurry

image sequence to generate a single unblurred image. Yuan

et al. [32] used a pair of images, one noisy and one blurred.

Rav-Acha and Peleg [26] consider images that have been

blurred in orthogonal directions to help estimate the PSF

and constrain the resulting image. Work most closely re-

lated to ours is that of Ben-Ezra and Nayar [3, 4], which

used an additional imaging sensor to capture low resolution

imagery for the purpose of computing optical flow and esti-

mating a global PSF.

The approaches mentioned above assume blur arises

from a global PSF. Recent works addressing spatially vary-

ing motion blur include that of Levin [18], which used

image statistics to correct a single motion blur on a sta-

ble background. Bardsley et al. [1] segmented the image

into regions exhibiting similar blur, while Cho et al. [7]

used two blurred images to simultaneously estimate local

PSFs as well as deconvolve the two images. Their ap-

proaches [18, 1, 7], however, assume the motion blur to

be globally invariant within each separated layer. Work by

Shan et al. [28] allows the PSF to be spatial varying; how-

ever, it only addressed rotational motion.

While various previous works are related in part, our

work is unique in its focus on spatially varying blur with no

assumption on motion path. Moreover, our approach takes

Figure 2. Our hybrid camera combines a Point Grey Dragonfly

II camera, which captures images of 1024 × 768 resolution at 25
fps (6.25 fps for image deblurring examples), and a Mikrotron

MC1311 camera that captures images of 128 × 96 resolution at

100 fps. A beamsplitter is employed to align their optical axes and

respective images.

full advantage of the rich information available in the hybrid

camera framework to achieve sharper and cleaner results in

comparison to state-of-the-art techniques, as demonstrated

in Section 6.

3. Hybrid Camera System

The advantages of a hybrid camera system are derived

from the additional data acquired by the low-resolution

high-frame-rate (LR-HFR) camera. While the spatial res-

olution of this camera is too low for most practical applica-

tions, the high-speed imagery is reasonably blur free and is

thus suitable for optical flow computation. Since the cam-

eras are assumed to be synchronized temporally and ob-

serving the same scene, the optical flow corresponds to the

motion of the scene observed by the high-resolution low-

frame-rate (HR-LFR) camera, whose images are blurred

due to its slower temporal sampling. An obvious connec-

tion is to use the optical flow to compute the overall blur

kernel of the high-resolution image for deconvolution.

In the following, we discuss the construction of a hy-

brid camera, the optical flow and motion blur estimation,

and the use of the low-resolution images as reconstruction

constraints on the high-resolution images.

3.1. Camera Construction

Three conceptual designs of the hybrid camera system

were discussed by Ben-Ezra and Nayar [3]. In their work,

they implemented a simple design in which the two cam-

eras are placed side-by-side, such that their viewpoints can

be considered the same when viewing a distant scene. A

second design avoids the distant scene requirement by us-

ing a beam splitter to share between the two sensing devices

the light rays that pass through a single aperture, as demon-

strated by McGuire et al. [24] for the studio matting prob-

lem. A promising third design is to capture both the HR-

LFR and LR-HFR video on a single sensor chip. According

to [5], this can readily be achieved using a programmable

CMOS sensing device.



(a) (b)

Figure 3. Spatially varying blur kernel estimation using optical

flows. (a) Motion blur image. (b) Estimated blur kernels of (a)

using optical flow.

In our work, we built a hand-held hybrid camera sys-

tem based on the second design as shown in Figure 2. The

two cameras were positioned such that their optical axes and

pixel arrays are well aligned, and video synchronization is

achieved using a 8051 microcontroller. To match the color

responses of the two devices, we employ histogram equal-

ization. Since the exposure levels of the two devices are set

to be equal, the signal-to-noise ratios in the HR-LFR and

LR-HFR images are approximately the same.

3.2. Blur Kernel Approximation Using Optical Flow

In the absence of occlusion, disocclusion, and out-of-

plane rotation, a blur kernel can be assumed to represent the

motion of a camera relative to objects in the scene. In [3],

this relative motion is assumed to be constant throughout

an image, and the globally invariant blur kernel is obtained

through the integration of global motion vectors over a

spline curve.

However, since optical flow is in fact a local estimation

of motions, we can calculate spatially varying blur kernels

from optical flow. We use the pyramidal Lucas-Kanade al-

gorithm [20] to calculate the optical flow at each pixel lo-

cation. These per-pixel motion vectors are then integrated

to form spatially varying blur kernels, one per pixel. Fig-

ure 3 shows an example of spatially varying blur kernels

estimated from optical flows.

These estimated blur kernels contain quantization errors

due to the low resolution of the optical flows. Additionally,

motion vector integration may provide an imprecise tempo-

ral interpolation of the flow observations. In our Bayesian

optimization framework, we consider the blur kernels to

also be parameters to be estimated, and thus are subject to

refinement in the optimization procedure. The details will

be discussed fully in Section 4.

3.3. Back­Projection Constraints

The capture of low-resolution frames in addition to

the high-resolution images not only facilitates optical flow

computation, but also provides super-resolution-based re-

construction constraints [13, 14, 6, 9, 29] on the high-

resolution deblurring solution. The back-projection algo-

rithm [13, 14] is one of the most common iterative tech-

niques to minimize reconstruction error, and can be formu-

lated as follows:

It+1 = It +

M∑

j=1

(u(Ilj − d(It ⊗ h))) ⊗ p (1)

where M is the number of corresponding low-resolution

observations, t is an iteration index, Ilj is the j-th low-

resolution image, ⊗ is the convolution operation, h is the

convolution filter before downsampling, p is a filter repre-

senting the back-projection process, and d(·) and u(·) are

the downsampling and upsampling processes respectively.

Equation (1) assumes that the low-resolution images have

been aligned and that each observation carries the same

weight. In the absence of a prior, h is chosen to be a gaus-

sian filter with a size proportionate to the downsampling

factor, and p is set equal to h.

In the hybrid camera system, a number of low-

resolution frames are captured in conjunction with each

high-resolution image. To exploit this available data, we

align these frames according to the computed optical flows,

and use them as back-projection constraints in Equation (1).

The number of low-resolution image constraints M is deter-

mined by the relative frame rates of the cameras. Each of

the low-resolution frames presents a physical constraint on

the high-resolution solution, in a manner resembling a set

of offset images in the super-resolution application.

4. Bayesian Optimization Framework

A brief review on the Richardson-Lucy deconvolution al-

gorithm is given as our approach is fashioned in a similar

manner. For sake of clarity, our algorithm is first discussed

for use with correcting global motion blur, followed by its

extension to spatially varying blur kernels.

4.1. Richardson­Lucy Image Deconvolution

The Richardson-Lucy algorithm [27, 21] is an iterative

deconvolution algorithm derived from Bayes Theorem that

minimizes the following estimation error:

arg min
I

n(||Ib − I ⊗ K||2) (2)

where I is the deblurred image, K is the blur kernel, Ib is

the observed blur image, and n(·) is the image noise distri-

bution. A solution can be obtained using the iterative update

algorithm defined as follows:

It+1 = It × K ∗
Ib

It ⊗ K
(3)

where ∗ is the correlation operation. A blind deconvolution

method using the Richardson-Lucy algorithm was proposed

by Fish et al. [11], which iteratively optimizes I and K in

alternation. The same equation (3) was used with positions



of I and K switched during optimization iterations for K.

The Richardson-Lucy algorithm assumes image noise n(·)
to follow a Poisson distribution. If we assume image noise

n(·) to follow a Gaussian distribution, then a least squares

method can be employed [13]:

It+1 = It + K ∗ (Ib − It ⊗ K) (4)

which shares the same iterative back-projection update rule

as Equation (1).

From video input with computed optical flows, mul-

tiple blurred images Ib and blur kernels K may be ac-

quired by reversing the optical flows of neighboring high-

resolution frames. These multiple observation constraints

can be jointly applied in Equation (4) [26] as

It+1 = It +
N∑

i=1

wiKi ∗ (Ibi
− It ⊗ Ki) (5)

where N is the number of aligned observations. That im-

age restoration can be improved with additional observa-

tions under different motion blurs is a important property

that we exploit in this work. The use of neighboring frames

in this manner may also serve to enhance the temporal con-

sistency of the deblurred video frames.

4.2. Optimization for Global Kernels

In solving for the deblurred images, our method jointly
employs the multiple deconvolution and back-projection
constraints derived from the hybrid camera input. For sim-
plicity, we assume in this subsection that the blur kernels
are spatially invariant. Our approach can be formulated into
a Bayesian framework as follows:

arg max
I,K

P (I, K|Ib, Ko, Il)

= arg max
I,K

P (Ib|I, K)P (Ko|I, K)P (Il|I)P (I)P (K)

= arg min
I,K

L(Ib|I, K)+L(Ko|I, K)+L(Il|I)+L(I)+L(K) (6)

where I and K are the sharp images and the blur kernels we

want to estimate, Ib, Ko and Il are the observed blur im-

ages, estimated blur kernels from optical flows, and the high

frame rate low resolution images respectively, and L(·) =
−log(P (·)). In our formulation, we make no assumption on

the priors P (I) and P (K). Assuming that P (Ko|I, K) is

conditionally independent of I , that the estimation errors of

likelihood probabilities P (Ib|I, K), P (Ko|K) and P (Il|I)
follow Gaussian distributions and that each observation of

Ib, Ko and Il are independent and identically distributed,

we can then rewrite Equation (6) as

arg min
I,K

N∑

i

||Ibi
− I ⊗ Ki||

2 + λB

M∑

j

||Ilj − d(I ⊗ h)||2

+λK

N∑

i

||Ki − Koi
||2 (7)

(a) (b) (c)

Figure 4. Convolution with kernel decomposition. (a) Convolu-

tion result without kernel decomposition, where full-sized kernels

are generated on-the-fly per-pixel. (b) Convolution using 30 PCA-

decomposed kernels. (d) Convolution using delta function decom-

position of kernels, with at most 30 delta functions per pixel.

where λK and λB are the relative weights of the error terms.

To optimize the above equation for I and K, we employ

alternating minimization. Combining Equations (1) and (5)

yields our iterative update rules:

1. Update It+1 = It +
∑N

i=1 Kt
i ∗ (Ibi

− It ⊗ Kt
i )

+λB

∑M

j=1 h ⊗ (u(Ilj − d(It ⊗ h)))

2. Update Kt+1
i = Kt

i + Ĩt+1 ∗ (Ibi
− It+1 ⊗ Kt

i )
+λK(Koi

− Kt
i )

where Ĩ = I/
∑

(x,y) I(x, y), I(x, y) ≥ 0, Ki(u, v) ≥ 0,

and
∑

(u,v) Ki(u, v) = 1. The two steps are updated in al-

ternation until the change in I falls below a specified level.

In our implementation, we set N = 3 in correspondence to

the current, previous and next frames, and M is set accord-

ing to the relative camera settings (4/16 for video/image de-

blurring). We also initialize I0 = Ib (the currently observed

blurred image), K0
i = Koi

(the estimated blur kernel from

optical flows), and set λB = λK .

4.3. Spatially Varying Kernels

A spatially varying blur kernel can be expressed as

K(x, y, u, v), where (x, y) is the image coordinate and

(u, v) is the kernel coordinate. For large sized kernels,

e.g. 65 × 65, this representation is impractical due to its

enormous storage requirements. Recent work has suggested

ways to reduce the storage size by constraining the motion

path [28]; however, our approach places no constraints on

possible motion. Instead, we decompose the spatially vary-

ing kernels into a set of P basis kernels kl whose mixture

weights al are a function of image location:

K(x, y, u, v) =
P∑

l=1

al(x, y)kl(u, v). (8)

The convolution equation then becomes

I(x, y)⊗K(x, y, u, v)=
P∑

l=1

al(x, y)(I(x, y)⊗kl(u, v)). (9)

In [17], principal components analysis (PCA) is used to

find the basis kernels. PCA, however, does not guarantee

positive kernel values, and we have found in our experi-

ments that PCA-decomposed kernels lead to unacceptable



(a) (b) (c) (d) (e)

Figure 5. Layer separation using a hybrid camera: (a)-(d) Low res-

olution frames and its corresponding binary segmentation masks.

(e) High resolution frame and the matte estimated by compositing

the low resolution segmentation masks with smoothing.

ringing artifacts, exemplified in Figure 4. We propose in-

stead to use a delta function representation, where each

delta function represents a position (u, v) within a kernel.

Since a motion blur kernel is typically sparse, we store only

30 ∼ 40 delta functions for each image pixel, where the

delta function positions are determined by the initial optical

flows. This normally results in about 500 ∼ 600 distinct

delta functions in total for an entire image, and provides a

sufficient approximation of the spatially varying blur ker-

nels in the convolution process.
Combining Equations (9) and (7), our optimization func-

tion becomes

arg min
I,K

N∑

i

||Ibi
−

P∑

l

ail(I ⊗ kil)||
2 + λB

M∑

j

||Ilj − d(I ⊗ h)||2

+λK

N∑

i

P∑

l

||ailkil − aoil
kil||

2
. (10)

The corresponding iterative update rules are then

1. Update It+1 = It +
∑N

i=1

∑P

l at
ilkil ∗ (Ibi

−∑P

l at
il(I

t⊗kil))+λB

∑M

j=1 h⊗(u(Ilj −d(It⊗h)))

2. Update at+1
il = at

il + (Ĩ ′
t+1

∗ (I ′bi
−

∑P

l at
il(I

′t+1 ⊗
kil))) · kil + λK(aoil

− at
il)

where I ′ and I ′b are local patches of the estimated result and

the blur image. The number of delta functions kil stored at

each pixel position may be reduced when an updated value

of ail becomes insignificant. Since convolution is a linear

operation, each update rule itself is a convex optimization

problem such that the energy in Equation (10) is monoton-

ically non-increasing with each step. For greater stability,

we process each update rule five times before switching to

the other.

4.4. Discussion

Utilizing both deconvolution of high-resolution images

and back-projection from low-resolution images offers dis-

tinct advantages, because the deblurring information from

(a) (b)

(c) (d)

(e) (f)

Figure 6. Image deblurring using globally invariant kernels. (a)

Input. (b) Result generated by [10], where the user-selected re-

gions are indicated by black boxes. (c) Result generated by [3].

(d) Result generated by back projection [13]. (e) Our results. (f)

The ground truth sharp image. Close-up views and the estimated

global blur kernels are also shown.

these two sources tend to complement each other. This

can be intuitively seen by considering a low-resolution im-

age to be a sharp high-resolution image that has under-

gone motion blurring with a gaussian PSF and bandlim-

iting. Back-projection may then viewed as a deconvolu-

tion with a gaussian blur kernel, and would promote re-

covery of lower-frequency image features without artifacts.

On the other hand, deconvolution of high-resolution im-

ages with the high-frequency PSFs typically associated with

camera and object motion generally supports reconstruction

of higher-frequency details, especially those orthogonal to

the motion direction. While some low-frequency content

can also be restored from motion blur deconvolution, there

is often significant loss due to the large support regions for

motion blur kernels, and this results in ringing artifacts. As

discussed in [26], the joint use of images having such dif-

ferent blur functions and deconvolution information favors

a better deblurring solution.

Multiple motion blur deconvolutions and multiple back-



projections can further help to generate high quality re-

sults. Differences in motion blur kernels among neigh-

boring frames provide different frequency information; and

multiple back-projection constraints help to reduce quan-

tization and the effects of noise in low-resolution images.

In some circumstances there exists redundancy in informa-

tion from a given source, such as when high-resolution im-

ages contain identical motion blur, or when low-resolution

images are offset by integer pixel amounts. This makes it

particularly important to utilize as much deblurring infor-

mation as can be obtained.

Although our approach can acquire and utilize a greater

amount of data, high frequency details that have been lost

by both motion blur and downsampling cannot be recov-

ered. This is a fundamental limitation of any deconvolution

algorithm. We also note that reliability in optical flow can-

not be assumed beyond a small time interval. This places

a restriction on the number of motion blur deconvolution

constraints that can be employed to deblur a given frame.

5. Extension to Deblurring of Moving Objects

In the presence of moving objects (and thus occlu-

sion and disocclusion), the high-resolution image needs to

be segmented into different layers, because pixels on the

blended boundaries of moving objects contain both fore-

ground and background components, each with different

relative motion to the camera. This layer separation is in-

herently a matting problem which typically requires user as-

sisted extraction [8, 19]. Fully automatic approaches, how-

ever, have required either a blue background [30], multi-

ple cameras with different focus [23], polarized illumina-

tion [24] or a camera array [16]. In this section, we propose

a simple solution to layer separation that takes advantage of

the hybrid camera system. As matting is not the primary

focus of our work, we offer a brief description of our ba-

sic approach to moving object layer separation, and leave a

more detailed investigation of this problem for future study.

In a hybrid-camera setup, moving objects should still re-

main sharp in high frame rate video. To extract the alpha

matte of a moving object, we can perform binary segmenta-

tion of the moving object in the low resolution images, and

then compose the binary segmentation masks with smooth-

ing to approximate the alpha matte in the high-resolution

image. In Figure 5, an example of this matte extraction

is demonstrated together with the moving object separation

method of Zhang et al. [33]. Once the moving objects are

separated, we can then deblur each layer separately using

our framework. The alpha mattes are also deblurred for

compositing, and the occluded background areas revealed

after alpha mask deblurring can then be filled in either by

back-projection from the low-resolution images or by the

motion inpainting method of [22].

(a) (b)

(c) (d)

(e) (f)

Figure 7. Image deblurring with spatial varying kernels from ro-

tational motion. (a) Input. (b) Result generated by [28] (Result is

obtained courtesy of the authors of [28]). (c) Result generated by

[3] with spatially varying blur kernels estimated from optical flow.

(d) Result generated by back projection [13]. (e) Our results. (f)

The ground truth sharp image. Close-ups are also shown.

6. Results and Comparisons

We evaluate our approach using real images on both im-

age deblurring and video deblurring. In these experiments,

a ground-truth blur-free image is acquired by mounting the

camera on a tripod and capturing a static scene. Motion

blurred images are then obtained by moving the camera

and/or introducing a dynamic scene object.

In Figure 6, we present an image deblurring example

with globally invariant motion, where the input is one high-

resolution image and several low-resolution images. Our

results are compared with those generated from Fergus et

al. [10], Ben-Ezra and Nayar [3] and back projection [13].

Fergus et al.’s approach is a state-of-the-art blind decon-

volution technique that employs a natural image statistics

constraint. However, when the blur kernel is not correctly

estimated, an unsatisfactory result shown in (b) will be pro-

duced. Ben-Ezra and Nayar use the estimated optical flow

as the blur kernel and then perform deconvolution. Their



result in (c) is better than that in (b) as the estimated blur

kernel is more accurate, but ringing artifacts are still un-

avoidable. Back-projection produces a super-resolution re-

sult from a sequence of low resolution images as shown in

(d). Noting that motion blur removal is not the intended ap-

plication of back-projection, we can see that its results are

blurry since the high-frequency details are not sufficiently

captured in the low resolution images. The result of our

method and the refined kernel estimate are displayed in (e).

The ground truth is given in (f) for comparison.

Figure 7 shows an example with rotational motion. We

compared our result with those by Shan et al. [28], Ben-

Ezra and Nayar [3], and back projection [13]. Our approach

is seen to produce less ringing artifacts compared to [28]

and [3], and it generates greater detail than [13].

The benefit of using multiple deconvolutions from mul-

tiple high-resolution frames is exhibited in Figure 8, for a

pinwheel with both translational and rotational motion. The

deblurring result in (c) was computed using only (a) as in-

put. Likewise, (d) is the deblurred result from only (b). Us-

ing both (a) and (b) as inputs yields the improved result in

(e). This improvement can be attributed to the difference

in high-frequency detail that can be recovered from each of

the differently blurred images. The ground truth is shown

in (f) for comparison.

Figure 9 demonstrates video deblurring of a tossed box

with arbitrary motion. The top row displays five consecu-

tive frames of input. The middle row shows our separated

mattes for the moving object, and the last row presents our

results. The information gained from consecutive frames

leads to high-quality deblurring results and enhanced tem-

poral consistency.

7. Conclusion

We have proposed an approach for image/video deblur-

ring using a hybrid camera. Our work has formulated the

deblurring process as an iterative method that incorporates

optical flow, back-projection, kernel refinement, and frame

coherency to effectively combine the benefits of both de-

convolution and super-resolution. We demonstrate that this

approach can produce results that are sharper and cleaner

than state-of-the-art techniques.

Future research directions for this work include enlarg-

ing the temporal resolution of the high-resolution deblurred

video. With the deblurring of each individual frame, tempo-

ral discontinuities in the low-frame-rate video become more

evident and may result in some jumpiness through the se-

quence. Another research direction is to allow greater re-

finement of blur kernels in the iterative optimization. Cur-

rently, the refinement is limited to within the low-resolution

PSF estimated from optical flows. We believe that this hy-

brid camera framework has significant potential for exten-

sion into other application domains.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Deblurring with and without multiple high-resolution

frames. (a)(b) Input images containing both translational and rota-

tional motion blur. (c) Deblurring using only (a) as input. (d) De-

blurring using only (b) as input. (e) Deblurring of (a) using both

(a) and (b) as inputs. (f) Ground truth sharp image. Close-ups are

also shown.
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