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Abstract

We describe a novel approach to reduce spatially-varying motion blur in video and images using

a hybrid camera system. A hybrid camera is a standard video camera that is coupled with an auxiliary

low-resolution camera sharing the same optical path but capturing at a significantly higher frame rate.

The auxiliary video is temporally sharper but at a lower resolution, while the lower-frame-rate video

has higher spatial resolution but is susceptible to motion blur.

Our deblurring approach uses the data from these two video streams to reduce spatially-varying

motion blur in the high-resolution camera with a technique that combines both deconvolution and super-

resolution. Our algorithm also incorporates a refinement of the spatially-varying blur kernels to further

improve results. Our approach can reduce motion blur from the high-resolution video as well as estimate

new high-resolution frames at a higher framerate. Experimental results on a variety of inputs demonstrate

notable improvement over current state-of-the-art methods in image/video deblurring.

I. INTRODUCTION

This paper introduces a novel approach to reduce spatially-varying motion blur in video

footage. Our approach uses a hybrid camera framework first proposed by Ben-Ezra and Nayar [6],

[7]. A hybrid camera system simultaneously captures a high-resolution video together with a

low-resolution video that has denser temporal sampling. The hybrid camera system is designed

such that the two videos are synchronized and share the same optical path. Using the information

in these two videos, our method has two aims: 1) to deblur the frames in the high-resolution

video, and 2) to estimate new high-resolution video frames at a higher temporal sampling.

While high-resolution, high-frame-rate digital cameras are becoming increasingly more afford-

able (e.g. 1960×1280 at 60fps are now available at consumer prices), the hybrid-camera design

remains promising. Even at 60fps, high-speed photography/videography is susceptible to motion

blur artifacts. In addition, as the frame-rate of high-resolution cameras increase, low-resolution

camera frame-rate speeds increase accordingly with cameras available now with over 1000fps

at lower-resolution. Thus, our approach has application to ever increasing temporal imaging. In

addition, the use of hybrid cameras, and hybrid-camera like designs, have been demonstrated to

offer other advantages over single view cameras including object segmentation and matting [7],

[35], [36], depth estimation [31] and high dynamic range imaging [1]. The ability to perform

object segmentation is key in deblurring moving objects as demonstrated by [7] and our own

work in Section V.
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Fig. 1. Tradeoff between resolution and frame rates. Top: Image from a high-resolution, low-frame-rate camera. Bottom: Images

from a low-resolution, high-frame-rate camera.

The previous work in [6], [7] using a hybrid camera system focused on correcting motion blur

in a single image targeting globally invariant motion blur. In this paper, we address the broader

problem of correcting spatially-varying motion blur and aim to deblur temporal sequences.

In addition, our work achieves improved deblurring performance by more comprehensively

exploiting the available information acquired in the hybrid camera system, including optical flow,

back-projection constraints between low-resolution and high-resolution images, and temporal

coherence along image sequences. In addition, our approach can be used to increase the frame

rate of the high-resolution camera by estimating the missing frames.

The central idea in our formulation is to combine the benefits of both deconvolution and

super-resolution. Deconvolution of motion blurred, high-resolution images yields high-frequency

details, but with ringing artifacts due to lack of low-frequency components. In contrast, super-

resolution-based reconstruction from low-resolution images recovers artifact-free low-frequency

results that lack high-frequency detail. We show that the deblurring information from deconvolu-

tion and super-resolution are complementary to each other and can be used together to improve

deblurring performance. In video deblurring applications, our method furthermore capitalizes

on additional deconvolution constraints that can be derived from consecutive video frames. We

demonstrate that this approach produces excellent results in reducing spatially-varying motion

blur. In addition, the availability of the low-resolution imagery and subsequently derived motion
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Fig. 2. The processing pipeline of our system. Optical flows are first calculated from the Low-Resolution, High-Frame-Rate

(LR-HFR) video. From the optical flows, spatially-varying motion blur kernels are estimated (Section III-B). Then the main

algorithm performs an iterative optimization procedure which simultaneously deblurs the High-Resolution, Low-Frame-Rate

(HR-LFR) image/video and refines the estimated kernels (Section IV). The output is a deblurred HR-LFR image/video. For the

case of deblurring a moving object, the object is separated from the background prior to processing (Section V). In the deblurring

of video, we can additionally enhance the frame rate of the deblurred video to produce a High-Resolution, High-Frame-Rate

(HR-HFR) video result (Section VI).

vectors further allows us to perform estimate new temporal frames in the high-resolution video,

which we also demonstrate.

A shorter version of this work appeared in [47]. This journal version extends our confer-

ence work with greater discussion of the deblurring algorithm, further technical details of

our implementation, and additional experimentations. In addition, a method to estimate new

temporal frames in the high-resolution video is presented in Section VI together with supporting

experiments in Section VII.

The processing pipeline of our approach is shown in Figure 2, which also relates process

components to their corresponding section in the paper. The remainder of the paper is organized

as follows: Section II discusses related work; Section III describes the hybrid camera setup

and the constraints on deblurring available in this system; Section IV describes our overall

deconvolution formulation expressed in a maximum a posteriori (MAP) framework; Section V

discusses how to extend our framework to handle moving objects; Section VI describes how to

perform temporal upsampling with our framework; Section VII provides results and comparisons

with other current work, followed by a discussion and summary in Section VIII.
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II. RELATED WORK

Motion deblurring can be cast as the deconvolution of an image that has been convolved

with either a global motion point spread function (PSF) or a spatially-varying PSF. The problem

is inherently ill-posed as there are a number of unblurred images that can produce the same

blurred image after convolution. Nonetheless, this problem is well studied given its utility in

photography and video capture. The following describes several related work.

Traditional Deblurring The majority of related work involves traditional blind deconvolution

which simultaneously estimates a global motion PSF and the deblurred image. These methods

include well-known algorithms such as Richardson-Lucy [40], [33] and Wiener deconvolu-

tion [50]. For a survey on blind deconvolution readers are referred to [20], [19]. These traditional

approaches often produce less than desirable results that include artifacts such as ringing.

PSF Estimation and Priors A recent trend in motion deblurring is to either constrain the

solution of the deblurred image or to use auxiliary information to aid in either the PSF estimation

or the deconvolution itself (or both). Examples include work by Fergus et al. [17], which used

natural image statistics to constrain the solution to the deconvolved image. Raskar et al. [38]

altered the shuttering sequence of a traditional camera to be make the PSF more suitable for

deconvolution. Jia [23] extracted an alpha mask of the blurred region to aid in PSF estimation.

Dey et al. [15] modified the Richardson-Lucy algorithm by incorporating total variation regular-

ization to suppress ringing artifacts. Levin et al. [28] introduced gradient sparsity constraints to

reduce ringing artifacts. Yuan et al. [53] proposed a multiscale non-blind deconvolution approach

to progressively recover motion blurred details. Shan et al. [41] studied the relationship between

estimation errors and ringing artifacts, and proposed the use of a spatial distribution model of

image noise together with a local prior that suppresses ringing to jointly improve global motion

deblurring.

Other recent approaches use more than one image to aid in the deconvolution process. Bascle

et al. [5] processed a blurry image sequence to generate a single unblurred image. Yuan et al. [52]

used a pair of images, one noisy and one blurred. Rav-Acha and Peleg [39] consider images that

have been blurred in orthogonal directions to help estimate the PSF and constrain the resulting

image. Chen and Tang [11] extend the work of [39] to remove the assumption of orthogonal blur

directions. Bhat et al. [8] proposed a method that uses high-resolution photographs to enhance
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low-quality video, but this approach is limited to static scenes. Most closely related to ours is the

work of Ben-Ezra and Nayar [6], [7], which used an additional imaging sensor to capture high-

frame-rate imagery for the purpose of computing optical flow and estimating a global PSF. Li et

al. [31] extend the work of Ben-Ezra and Nayar [6], [7] by using parallel cameras with different

frame rates and resolutions, but their work targets depth map estimation and not deblurring.

The aforementioned approaches assume the blur to arise from a global PSF. Recent work

addressing spatially-varying motion blur include that of Levin [27], which used image statistics to

correct a single motion blur on a stable background. Bardsley et al. [4] segmented an image into

regions exhibiting similar blur, while Cho et al. [12] used two blurred images to simultaneously

estimate local PSFs as well as deconvolve the two images. Ben-Ezra and Nayar [7] demonstrated

how the auxiliary camera could be used to separate a moving object from the scene and apply

deconvolution to this extracted layer. These approaches [27], [4], [12], [7], however, assume the

motion blur to be globally invariant within each separated layer. Work by Shan et al. [42] allows

the PSF to be spatially-varying; however, the blur is constrained to that from rotational motion.

Levin et al. [30] proposed a parabolic camera designed for deblurring images with 1D object

motion. During exposure, the camera moves in a manner that allows the resulting image to be

deblurred using a single deconvolution kernel.

Super-resolution and upsampling The problem of super-resolution can be considered as a

special case of motion deblurring in which the blur kernel is a low-pass filter that is uniform in

all motion directions. High-frequency details of a sharp image are therefore completely lost in

the observed low-resolution image. There are two main approaches to super-resolution: image

hallucination based on training data and image super-resolution computed from multiple low-

resolution images. Our work is closely related to the latter approach, which is reviewed here.

The most common technique for multiple image super-resolution is the back-projection algorithm

proposed by Irani and Peleg [21], [22]. The back-projection algorithm is an iterative refinement

procedure that minimizes the reconstruction errors of an estimated high-resolution image through

a process of convolution, downsampling and upsampling. A brief review that includes other early

work on multiple image super-resolution is given in [10]. More recently, Patti et al. [37] proposed

a method to align low-resolution video frames with arbitrary sampling lattices to reconstruct a

high-resolution video. Their approach also uses optical flow for alignment and PSF estimation.

These estimates, however, are global and do not consider local object motion. This work was
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extended by Elad and Feuer [16] to use adaptive filtering techniques. Zhao and Sawhney [55]

studied the performance of multiple image super-resolution against the accuracy of optical flow

alignment and concluded that the optical flows need to be reasonably accurate in order to avoid

ghosting effects in super-resolution results. Shechtman et al. [43] proposed space-time super-

resolution in which multiple video cameras with different resolutions and frame rates are aligned

using homographies to produce outputs of either higher temporal and/or spatial sampling. When

only two cameras are used, this approach can be considered a demonstration of a hybrid camera,

however, this work does not address the scenario where severe motion-blur is present in the high-

resolution, low-frame-rate camera. Sroubek et al. [45] proposed a regularization framework for

solving the multiple image super-resolution problem. This approach also does not consider local

motion blur effects. Recently, Agrawal [2] proposed a method to increase the resolution of images

that have been deblurred using a coded exposure system. Their approach can also be considered

as a combination of motion deblurring and super-resolution, but is limited to translational motion.

Our work While various previous works are related in part, our work is unique in its

focus on spatially-varying blur with no assumption on global or local motion paths. Moreover,

our approach takes full advantage of the rich information available from the hybrid camera

system, using techniques from both deblurring and super-resolution together in a single MAP

framework. Specifically,our approach incorporate spatially-varying deconvolution together with

back-projection against the low-resolution frames. This combined strategy produces deblurred

images with less ringing than traditional deconvolution, but with more detail than approaches

using regularization and prior constraints. As with other deconvolution methods, we cannot

recovery frequencies that have been completely loss due to motion blur and downsampling. A

more detail discussion on our approach is provided in Section IV-D.

III. HYBRID CAMERA SYSTEM

The advantages of a hybrid camera system are derived from the additional data acquired

by the low-resolution, high-frame-rate (LR-HFR) camera. While the spatial resolution of this

camera is too low for many practical applications, the high-speed imagery is reasonably blur

free and is thus suitable for optical flow computation. Figure 1 illustrates an example. Since the

cameras are assumed to be synchronized temporally and observing the same scene, the optical

flow corresponds to the motion of the scene observed by the high-resolution, low-frame-rate
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Fig. 3. Our hybrid camera combines a Point Grey Dragonfly II camera, which captures images of 1024× 768 resolution at 25

fps (6.25 fps for image deblurring examples), and a Mikrotron MC1311 camera that captures images of 128 × 96 resolution at

100 fps. A beamsplitter is employed to align their optical axes and respective images. Video synchronization is achieved using

a 8051 microcontroller.

(HR-LFR) camera, whose images are blurred due to its slower temporal sampling. This ability

to directly observe fast moving objects in the scene with the auxiliary camera allows us to handle

a larger class of object motions without the use of prior motion models, since optical flow can

be computed.

In the following, we discuss the construction of a hybrid camera, the optical flow and motion

blur estimation, and the use of the low-resolution images as reconstruction constraints on high-

resolution images.

A. Camera Construction

Three conceptual designs of the hybrid camera system were discussed by Ben-Ezra and

Nayar [6]. In their work, they implemented a simple design in which the two cameras are

placed side-by-side, such that their viewpoints can be considered the same when viewing a

distant scene. A second design avoids the distant scene requirement by using a beam splitter

to share between two sensing devices the light rays that pass through a single aperture, as

demonstrated by McGuire et al. [36] for the studio matting problem. A promising third design
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(a) (b)

Fig. 4. Spatially-varying blur kernel estimation using optical flows. (a) Motion blur image. (b) Estimated blur kernels of (a)

from optical flows.

is to capture both the HR-LFR and LR-HFR video on a single sensor chip. According to [9],

this can readily be achieved using a programmable CMOS sensing device.

In our work, we constructed a hand-held hybrid camera system based on the second design as

shown in Figure 3. The two cameras are positioned such that their optical axes and pixel arrays

are well aligned. Video synchronization is achieved using a 8051 microcontroller. To match

the color responses of the two devices we employ histogram equalization. In our implemented

system, the exposure levels of the two devices are set to be equal, and the signal-to-noise ratios

in the HR-LFR and LR-HFR images are approximately the same.

B. Blur Kernel Approximation Using Optical Flows

In the absence of occlusion, disocclusion, and out-of-plane rotation, a blur kernel can be

assumed to represent the motion of a camera relative to objects in the scene. In [6], this relative

motion is assumed to be constant throughout an image, and the globally invariant blur kernel is

obtained through the integration of global motion vectors over a spline curve.

However, since optical flow is in fact a local estimation of motions, we can calculate spatially-

varying blur kernels from optical flows. We use the multiscale Lucas-Kanade algorithm [32] to

calculate the optical flow at each pixel location. Following the brightness constancy assumption

of optical flow estimation, we assume our motion blurred images are captured under constant
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illumination, such that the change of pixel color of moving scene/object points over the exposure

period can be neglected. The per-pixel motion vectors are then integrated to form spatially-

varying blur kernels, K(x, y), one per pixel. This integration is performed as described by [6]

for global motion. We use a C1 continuity spline curve fit to the path of optical flow at position

(x, y). The number of frame used to fit the spline curve is 16 for image examples and 4 for video

examples (Figure 3). Figure 4 shows an example of spatially-varying blur kernels estimated from

optical flows.

The optical flows estimated with the multiscale Lucas-Kanade algorithm [32] may contain

noise that degrades blur kernel estimation. We found such noisy estimates to occur mainly

in smooth or homogeneous regions which lack features for correspondence, while regions with

sharp features tend to have accurate optical flows. Since deblurring artifacts are evident primarily

around such features, the Lucas-Kanade optical flows are effective for our purposes. On the other

hand, the optical flow noise in relatively featureless regions has little effect on deblurring results,

since these areas are relatively unaffected by errors in the deblurring kernel. As a measure to

heighten the accuracy and consistency of estimated optical flows, we use local smoothing [51]

as an enhancement of the multiscale Lucas-Kanade algorithm [32].

The estimated blur kernels contain quantization errors due to the low resolution of the optical

flows. Additionally, motion vector integration may provide an imprecise temporal interpolation

of the flow observations. Our MAP optimization framework addresses these issues by refining

the estimated blur kernels in addition to deblurring the video frames or images. Details of this

kernel refinement will be discussed fully in Section IV.

C. Back-Projection Constraints

The capture of low-resolution frames in addition to the high-resolution images not only

facilitates optical flow computation, but also provides super-resolution-based reconstruction con-

straints [21], [22], [37], [10], [16], [3], [43] on the high-resolution deblurring solution. The back-

projection algorithm [21], [22] is a common iterative technique for minimizing the reconstruction

error, and can be formulated as follows:

I t+1 = I t +

M∑

j=1

(u(W (Ilj) − d(I t ⊗ h))) ⊗ p (1)
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Fig. 5. Performance comparisons for different deconvolution algorithms on a synthetic example. The ground truth motion

blur kernel is used to facilitate comparison. The signal-to-noise ratio (SNR) of each result is reported. (a) A motion blurred

image [SNR(dB)=25.62] with the corresponding motion blur kernel shown in the inset. Deconvolution results using (b) Wiener

filter [SNR(dB)=37.0], (c) Richardson-Lucy [SNR(dB)=33.89], (d) Total Variation Regularization [SNR(dB)=36.13], (e) Gradient

Sparsity Prior [SNR(dB)=46.37], and (f) our approach [SNR(dB)=50.26dB], which combines constraints from both deconvolution

and super-resolution. The low resolution image in (g) is 8x downsampled from the original image, shown in (h).

where M represents the number of corresponding low-resolution observations, t is an iteration

index, Ilj refers to the j-th low-resolution image, W (·) denotes a warp function that aligns Ilj to a

reference image, ⊗ is the convolution operation, h is the convolution filter before downsampling,

p is a filter representing the back-projection process, and d(·) and u(·) are the downsampling and

upsampling processes respectively. Equation (1) assumes that each observation carries the same

weight. In the absence of a prior, h is chosen to be a Gaussian filter with a size proportionate

to the downsampling factor, and p is set equal to h.

In the hybrid camera system, a number of low-resolution frames are captured in conjunction

with each high-resolution image. To exploit this available data, we align these frames according

to the computed optical flows, and use them as back-projection constraints in Equation (1).
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The number of low-resolution image constraints M is determined by the relative frame rates of

the cameras. In our implementation, we choose the first low-resolution frame as the reference

frame to which the estimated blur kernel and other low-resolution frames are aligned. Choosing

a different low-resolution frame as the reference frame would lead to different deblurred result,

which is a property that can be used to increase the temporal samples of the deblurred video as

later discussed in Section VI.

The benefits of using the back-projection constraint, and multiple such back-projection con-

straints, is illustrated in Figure 5. Each of the low-resolution frames presents a physical constraint

on the high-resolution solution in a manner that resembles how each offset image is used in a

super-resolution technique. The effectiveness of incorporating the back-projection constraint to

suppress ringing artifacts is demonstrated in Figure 5 in compared to several other deconvolution

algorithms.

IV. OPTIMIZATION FRAMEWORK

Before presenting our deblurring framework, we briefly review the Richardson-Lucy decon-

volution algorithm, as our approach is fashioned in a similar manner. For the sake of clarity,

our approach is first discussed for use in correcting global motion blur. This is followed by its

extension to spatially-varying blur kernels.

A. Richardson-Lucy Image Deconvolution

The Richardson-Lucy algorithm [40], [33] is an iterative maximum likelihood deconvolution

algorithm derived from Bayes’ theorem that minimizes the following estimation error:

arg min
I

n(||Ib − I ⊗ K||2) (2)

where I is the deblurred image, K is the blur kernel, Ib is the observed blur image, and n(·)
is the image noise distribution. A solution can be obtained using the iterative update algorithm

defined as follows:

I t+1 = I t × K ∗ Ib

I t ⊗ K
(3)

where ∗ is the correlation operation. A blind deconvolution method using the Richardson-Lucy

algorithm was proposed by Fish et al. [18], which iteratively optimizes I and K in alternation

using Equation (3) with the positions of I and K switched during optimization iterations for
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(a) (b) (c) (d) (e)

Fig. 6. Multiscale refinement of a motion blur kernel for the image in Figure 11. (a) to (e) exhibit refined kernels at progressively

finer scales. Our kernel refinement starts from the coarsest level. The result of each coarser level is then upsampled and used

as an initial kernel estimate for the next level of refinement.

K. The Richardson-Lucy algorithm assumes image noise n(·) to follow a Poisson distribution.

If we assume image noise to follow a Gaussian distribution, then a least squares method can be

employed [21]:

I t+1 = I t + K ∗ (Ib − I t ⊗ K) (4)

which shares the same iterative back-projection update rule as Equation (1).

From video input with computed optical flows, multiple blurred images Ib and blur kernels

K may be acquired by reversing the optical flows of neighboring high-resolution frames. These

multiple observation constraints can be jointly applied in Equation (4) [39] as

I t+1 = I t +
N∑

i=1

wiKi ∗ (Ibi
− I t ⊗ Ki) (5)

where N is the number of aligned observations. That image restoration can be improved with

additional observations under different motion blurs is a important property that we exploit in

this work. The use of neighboring frames in this manner may also serve to enhance the temporal

consistency of the deblurred video frames.

B. Optimization for Global Kernels

In solving for the deblurred images, our method jointly employs the multiple deconvolution

and back-projection constraints available from the hybrid camera input. For simplicity, we assume

in this subsection that the blur kernels are spatially invariant. Our approach can be formulated
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(a) (b)

(c) (d)

Fig. 7. Convolution with kernel decomposition. (a) Convolution result without kernel decomposition, where full blur kernels are

generated on-the-fly per pixel using optical flow integration. (b) Convolution using 30 PCA-decomposed kernels. (c) Convolution

using a patch-based decomposition. (d) Convolution using delta function decomposition of kernels, with at most 30 delta functions

per pixel.

Fig. 8. PCA versus the delta function representation for kernel decomposition. The top row illustrates the kernel decomposition

using PCA, and the bottom row shows the decomposition using the delta function representation. The example kernel is taken

from among the spatially-varying kernels of Figure 7, from which the basis kernels are derived. Weights are displayed below

each of the basis kernels. The delta function representation not only guarantees positive values of basis kernels, but also provides

more flexibility in kernel refinement.

into a MAP estimation framework as follows:

arg max
I,K

P (I, K|Ib, Ko, Il)

= arg max
I,K

P (Ib|I, K)P (Ko|I, K)P (Il|I)P (I)P (K)

= arg min
I,K

L(Ib|I, K)+L(Ko|I, K)+L(Il|I)+L(I)+L(K) (6)
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where I and K denote the sharp images and the blur kernels we want to estimate, Ib, Ko

and Il are the observed blur images, estimated blur kernels from optical flows, and the low-

resolution, high-frame-rate images respectively, and L(·) = −log(P (·)). In our formulation, the

priors P (I) and P (K) are taken to be uniformly distributed. Assuming that P (Ko|I, K) is

conditionally independent of I , that the estimation errors of likelihood probabilities P (Ib|I, K),

P (Ko|I, K) and P (Il|I) follow Gaussian distributions and that each observation of Ib, Ko and

Il is independent and identically distributed, we can then rewrite Equation (6) as

arg min
I,K

N∑

i

||Ibi
− I ⊗ Ki||2 + λB

M∑

j

||Ilj − d(I ⊗ h)||2 + λK

N∑

i

||Ki − Koi
||2 (7)

where λK and λB are the relative weights of the error terms. To optimize the above equation

for I and K, we employ alternating minimization. Combining Equations (1) and (5) yields our

iterative update rules:

1) Update I t+1 = I t +
∑N

i=1 Kt
i ∗ (Ibi

− I t ⊗ Kt
i ) + λB

∑M

j=1 h ⊗ (u(W (Ilj) − d(I t ⊗ h)))

2) Update Kt+1
i = Kt

i + Ĩ t+1 ∗ (Ibi
− I t+1 ⊗ Kt

i ) + λK(Koi
− Kt

i )

where Ĩ = I/
∑

(x,y) I(x, y), I(x, y) ≥ 0, Ki(u, v) ≥ 0, and
∑

(u,v) Ki(u, v) = 1. The two update

steps are processed in alternation until the change in I falls below a specified level or until a

maximum number of iterations is reached. The term W (Ilj) is the warped aligned observations.

The reference frame to which these are aligned to can be any of the M low-resolution images.

Thus for each deblurred high-resolution frame we have up to M possible solutions. This will

later be used in the temporal upsampling described in Section VI. In our implementation, we

set N = 3 in correspondence to the current, previous and next frames, and M is set according

to the relative camera settings (4/16 for video/image deblurring in our implementation). We also

initialize I0 as the currently observed blur image Ib, K0
i as the estimated blur kernel Koi

from

optical flows, and set λB = λK = 0.5.

For more stable and flexible kernel refinement, we refine the kernel in a multiscale fashion

as done in [17], [52]. Figure 6 illustrates the kernel refinement process. We estimate PSFs from

optical flows of the observed low-resolution images and then downsample to the coarsest level.

After refinement at a coarser level, kernels are then upsampled and refined again. The multiscale

pyramid is constructed using a downsampling factor of 1/
√

2 with five levels. The likelihood

P (Ko|K) is applied at each level of the pyramid with a decreasing weight, so as to allow more
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flexibility in refinement at finer levels. We note that starting at a level coarser than the low-

resolution images allows our method to recover from some error in PSF estimation from optical

flows.

C. Spatially-varying Kernels

A spatially-varying blur kernel can be expressed as K(x, y, u, v), where (x, y) is the image

coordinate and (u, v) is the kernel coordinate. For large sized kernels, e.g., 65×65, this represen-

tation is impractical due to its enormous storage requirements. Recent work has suggested ways

to reduce the storage size, such as by constraining the motion path [42]; however, our approach

places no constraints on possible motion. Instead, we decompose the spatially-varying kernels

into a set of P basis kernels kl whose mixture weights al are a function of image location:

K(x, y, u, v) =
P∑

l=1

al(x, y)kl(u, v). (8)

The convolution equation then becomes

I(x, y) ⊗ K(x, y, u, v) =

P∑

l=1

al(x, y)(I(x, y)⊗ kl(u, v)). (9)

In related work [26], principal components analysis (PCA) is used to determine the basis

kernels. PCA, however, does not guarantee positive kernel values, and we have found in our

experiments that PCA-decomposed kernels often lead to unacceptable ringing artifacts, exem-

plified in Figure 7(b). The ringing artifacts in the convolution result resemble the patterns of

basis kernels. Another method is to use a patch representation which segments images into many

small patches such that the local motion blur kernel is the same within each small patch. This

method was used in [25], but their blur kernels are defocus kernels with very small variations

within local areas. For large object motion, blur kernels in the patch based method would not

be accurate, leading to discontinuity artifacts as shown in Figure 7(c). We instead choose to use

a delta function representation, where each delta function represents a position (u, v) within a

kernel. Since a motion blur kernel is typically sparse, we store only 30 ∼ 40 delta functions for

each image pixel, where the delta function positions are determined by the initial optical flows.

From the total 65×65 possible delta-function in the spatial kernel at each pixel in the image, we

find in practice that we only use about 500 ∼ 600 distinct delta functions to provide a sufficient

approximation of the spatially-varying blur kernels in the convolution process. Examples of basis
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kernel decomposition using PCA and the delta function representation are shown in Figure 8. The

delta function representation also offers more flexibility in kernel refinement, while refinements

using the PCA representation are limited to the PCA subspace.

Combining Equations (9) and (7), our optimization function becomes

arg min
I,K

N∑

i

||Ibi
−

P∑

l

ail(I ⊗ kil)||2 + λB

M∑

j

||Ilj − d(I ⊗ h)||2 + λK

N∑

i

P∑

l

||ailkil − aoil
kil||2. (10)

The corresponding iterative update rules are then

1) Update I t+1 = I t +
∑N

i=1

∑P

l at
ilkil ∗ (Ibi

−
∑P

l at
il(I

t ⊗ kil)) + λB

∑M

j=1 h⊗ (u(W (Ilj)−
d(I t ⊗ h)))

2) Update at+1
il = at

il + (Ĩ ′
t+1 ∗ (I ′

bi
−

∑P

l at
il(I

′t+1 ⊗ kil))) · kil + λK(aoil
− at

il)

where I ′ and I ′

b are local windows in the estimated result and the blur image. This kernel

refinement can be implemented in a multiscale framework for greater flexibility and stability.

The number of delta functions kil stored at each pixel position may be reduced when an updated

value of ail becomes insignificant. For greater stability, we process each update rule five times

before switching to the other.

D. Discussion

Utilizing both deconvolution of high-resolution images and back-projection from low-resolution

images offers distinct advantages, because the deblurring information from these two sources

tend to complement each other. This can be intuitively seen by considering a low-resolution

image to be a sharp high-resolution image that has undergone motion blurring with a Gaussian

PSF and bandlimiting. Back-projection may then be viewed as a deconvolution with a Gaussian

blur kernel that promotes recovery of lower-frequency image features without artifacts. On the

other hand, deconvolution of high-resolution images with the high-frequency PSFs typically

associated with camera and object motion generally supports reconstruction of higher-frequency

details, especially those orthogonal to the motion direction. While some low-frequency content

can also be restored from motion blur deconvolution, there is often significant loss due to the

large support regions for motion blur kernels, and this results in ringing artifacts. As discussed in

[39], the joint use of images having such different blur functions and deconvolution information

favors a better deblurring solution.
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Multiple motion blur deconvolutions and multiple back-projections can further help to generate

high quality results. Differences in motion blur kernels among neighboring frames provide differ-

ent frequency information; and multiple back-projection constraints help to reduce quantization

and the effects of noise in low-resolution images. In some circumstances there exists redundancy

in information from a given source, such as when high-resolution images contain identical motion

blur, or when low-resolution images are offset by integer pixel amounts. This makes it particularly

important to utilize as much deblurring information as can be obtained.

Our current approach does not utilize priors on the deblurred image or the kernels. With

constraints from the low-resolution images, we have found these priors to be unneeded. Fig-

ure 5 compares our approach with other deconvolution algorithms. Specifically, we compare our

approach with Total Variation regularization [15] and Sparsity Priors [28], which have recently

been shown to produce better results than traditional Wiener filtering [50] and the Richardson-

Lucy [40], [33] algorithm. Both Total Variation regularization and Sparsity Priors produce results

with less ringing artifacts. There are almost no ringing artifacts with Sparsity Priors, but many

fine details are lost. In our approach, most medium to large scale ringing artifacts are removed

using the back-projection constraints, while fine details are recovered through deconvolution.

Although our approach can acquire and utilize a greater amount of data, high-frequency details

that have been lost by both motion blur and downsampling cannot be recovered. This is a

fundamental limitation of any deconvolution algorithm that does not hallucinate detail. We also

note that reliability in optical flow cannot be assumed beyond a small time interval. This places

a restriction on the number of motion blur deconvolution constraints that can be employed to

deblur a given frame.

Lastly, we note that iterative back-projection technique incorporated into our framework is

known to have convergence problems. Empirically we have found that stopping after no more

than 50 iterations of our algorithm produces acceptable results.

V. DEBLURRING OF MOVING OBJECTS

To deblur a moving object, a high-resolution image needs to be segmented into different

layers because pixels on the blended boundaries of moving objects contain both foreground and

background components, each with different relative motion to the camera. This layer separation
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(a) (b) (c) (d) (e)

Fig. 9. Layer separation using a hybrid camera: (a)-(d) Low-resolution frames and their corresponding binary segmentation

masks. (e) High-resolution frame and the matte estimated by compositing the low-resolution segmentation masks with smoothing.

is inherently a matting problem that can be expressed as:

I = αF + (1 − α)B (11)

where I is the observed image intensity, F , B and α are the foreground color, background

color and alpha value of the fractional occupancy of the foreground. The matting problem is

an ill-posed problem since the number of unknown variables is greater than the number of

observations. Single image approaches require user assistance to provide a trimap [14], [13], [46]

or scribbles [49], [29], [48] for collecting samples of the foreground and background colors. Fully

automatic approaches, however, have required either a blue background [44], multiple cameras

with different focus [35], polarized illumination [36] or a camera array [24]. In this section, we

propose a simple solution to the layer separation problem that takes advantage of the hybrid

camera system.

Our approach assumes that object motion does not cause motion blur in the high-frame-rate

camera, such that the object appears sharp. To extract the alpha matte of a moving object,

we perform binary segmentation of the moving object in the low-resolution images, and then

compose the binary segmentation masks with smoothing to approximate the alpha matte in the
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high-resolution image. We note that Ben-Ezra and Nayar [7] used a similar strategy to perform

layer segmentation in their hybrid-camera system. In Figure 9, an example of this matte extraction

is demonstrated together with the moving object separation method of Zhang et al. [54]. The

foreground color F also must be estimated for deblurring. This can be done by assuming a local

color smoothness prior on F and B and solving for their values with Bayesian matting [14]:

 Σ−1

F + Iα2/σ2
I Iα(1 − α)/σ2

I

Iα(1 − α)/σ2
I Σ−1

B + I(1 − α)2/σ2
I





 F

B


 =


 Σ−1

F µF + Iα/σ2
I

Σ−1
B µB + I(1 − α)/σ2

I


 (12)

where (µF , ΣF ) and (µB, ΣB) are the local color mean and covariance matrix (Gaussian dis-

tribution) of the foreground and background colors, I is a 3 × 3 identity matrix, and σI is the

standard derivation of I , which models estimation errors of Equation (11). Given the solution of

F and B, the α solution can be refined by solving Equation (11) in closed form. Refinements

of F , B, and α can be done in alternation to further improve the result.

Once moving objects are separated, we deblur each layer separately using our framework. The

alpha mattes are also deblurred for compositing, and the occluded background areas revealed

after alpha mask deblurring can then be filled in either by back-projection from the low-resolution

images or by the motion inpainting method of [34].

VI. TEMPORAL UPSAMPLING

Unlike deblurring of images, videos require deblurring of multiple consecutive frames in

a manner that preserves temporal consistency. As described in Section IV-B, we can jointly

use the current, previous and subsequent frames to deblur the current frame in a temporally

consistent way. However, after sharpening each individual frame, temporal discontinuities in the

deblurred high-resolution, low-frame-rate video may become evident through some jumpiness

in the sequence. In this section, we describe how our method can alleviate this problem by

increasing the temporal sampling rate to produce a deblurred high-resolution, high-frame-rate

video.

As discussed by Shechtman et al. [43], temporal super resolution results when an algorithm

can generate an output with a temporal rate that surpasses the temporal sampling of any of the

input devices. While our approach generates a high-resolution video at greater temporal rate than

the input high-resolution, low-frame-rate video, its temporal rate is bounded by the frame rate
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LR-HFR images

HR-LFR image

        Deblurred image with di!erent 

LR-HFR images as reference for alignment

1

2

M-1

M

1

M

Fig. 10. Relationship of high-resolution deblurred result to corresponding low-resolution frame. Any of the low-resolution

frame can be selected as a reference frame for the deblurred result. This allows up to M deblurred solutions to be obtained.

the low-resolution, high-frame-rate camera. We therefore refrain from the term super resolution

and refer to this as temporal upsampling.

Our solution to temporal upsampling derives directly from our deblurring algorithm. The

deblurring problem is a well-known under-constrained problem since there exist many solutions

that can correspond to a given motion blurred image. In our scenario, we have M high-frame-

rate low-resolution frames corresponding to each high-resolution, low-frame-rate motion blurred

image. Figure 10 shows an example. With our algorithm, we therefore have the opportunity to

estimate M solutions using each one of the M low-resolution frames as the basic reference frame.

While the ability to produce multiple deblurred frames is not a complete solution to temporal

upsampling, here the use of these M different reference frames leads to a set of deblurred

frames that is consistent with the temporal sequence. This unique feature of our approach is

gained through the use of the hybrid camera to capture low-resolution, high-frame-rate video in

addition to the standard high-resolution, low-frame-rate video. The low-resolution, high-frame-

rate video not only aids in estimating the motion blur kernels and provides back-projection

constraints, but can also help to increase the deblurred video frame rate. The result is a high-

resolution, high-frame-rate deblurred video.
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(a) (b) (c)

(d) (e) (f)

Fig. 11. Image deblurring using globally invariant kernels. (a) Input. (b) Result generated with the method of [17], where the

user-selected region is indicated by a black box. (c) Result generated by [6]. (d) Result generated by back-projection [21]. (e)

Our results. (f) The ground truth sharp image. Close-up views and the estimated global blur kernels are also shown.

VII. RESULTS AND COMPARISONS

We evaluate our deblurring framework using real images and videos. In these experiments, a

ground-truth blur-free image is acquired by mounting the camera on a tripod and capturing a

static scene. Motion blurred images are then obtained by moving the camera and/or introducing a

dynamic scene object. We show examples of several different cases: globally invariant motion

blur caused by hand shake, in-plane rotational motion of a scene object, translational motion

of a scene object, out-of-plane rotational motion of an object, zoom-in motion caused by

changing the focal length (i.e. camera’s zoom setting), a combination of translational motion

and rotational motion with multiple frames used as input for deblurring one frame, video
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(a) (b) (c)

(d) (e) (f)

Fig. 12. Image deblurring with spatial varying kernels from rotational motion. (a) Input. (b) Result generated with the method

of [42] (obtained courtesy of the authors of [42]). (c) Result generated by [6] using spatially-varying blur kernels estimated

from optical flow. (d) Result generated by back-projection [21]. (e) Our results. (f) The ground truth sharp image. Close-ups are

also shown.

deblurring with out-of-plane rotational motion, video deblurring with complex in-plane

motion, and video deblurring with a combination of translational and zoom-in motion.

[Globally invariant motion blur] In Figure 11, we present an image deblurring example

with globally invariant motion, where the input is one high-resolution image and several low-

resolution images. Our results are compared with those generated by the methods of Fergus

et al. [17], Ben-Ezra and Nayar [6] and back projection [21]. Fergus et al.’s approach is a

state-of-the-art blind deconvolution technique that employs a natural image statistics constraint.

However, when the blur kernel is not correctly estimated, an unsatisfactory result shown in (b)
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(a) (b) (c)

(d) (e) (f)

Fig. 13. Image deblurring with translational motion. In this example, the moving object is a car moving horizontally. We

assume that the motion blur within the car is globally invariant. (a) Input. (b) Result generated by [17], where the user-selected

region is indicated by the black box. (c) Result generated by [6]. (d) Result generated by back-projection [21]. (e) Our results.

(f) The ground truth sharp image captured from another car of the same model. Close-up views and the estimated global blur

kernels within the motion blur layer are also shown.

will be produced. Ben-Ezra and Nayar use the estimated optical flow as the blur kernel and then

perform deconvolution. Their result in (c) is better than that in (b) as the estimated blur kernel

is more accurate, but ringing artifacts are still unavoidable. Back-projection produces a super-

resolution result from a sequence of low resolution images as shown in (d). Noting that motion

blur removal is not the intended application of back-projection, we can see that its results are

blurry since the high-frequency details are not sufficiently captured in the low-resolution images.

The result of our method and the refined kernel estimate are displayed in (e). The ground truth
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(a) (b) (c)

(d) (e) (f)

Fig. 14. Image deblurring with spatially-varying kernels. In this example, the moving object contains out-of-plane rotation

with both occlusion and disocclusion at the object boundary. (a) Input. (b) Result generated by [6]. (c) Result generated by

back projection [21]. (d) Our results using the first low-resolution frame as the reference frame. (e) Our results using the last

low-resolution frame as the reference frame. (f) The ground truth sharp image. Close-ups are also shown.

is given in (f) for comparison.

[In-plane rotational motion] Figure 12 shows an example with in-plane rotational motion.

We compared our result with those by Shan et al. [42], Ben-Ezra and Nayar [6], and back-

projection [21]. Shan et al. [42] is a recent technique that targets deblurring of in-plane rotational

motion. Our approach is seen to produce less ringing artifacts compared to [42] and [6], and it

generates greater detail than [21].

[Translational motion] Figure 13 shows an example of a car translating horizontally. We

assume the motion blur within the car region is globally invariant and thus techniques for
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(a) (b) (c)

(d) (e) (f)

Fig. 15. Image deblurring with spatially-varying kernels. In this example, the camera is zooming into the scene. (a) Input.

(b) Result generated by [17]. (b) Result generated by [6]. (c) Result generated by back-projection [21]. (d) Our results. (f) The

ground truth sharp image. Close-ups are also shown.

removing globally invariant motion blur can be applied after layer separation of the moving

object. We use the technique proposed in Section V to separate the moving car from the static

background. Our results are compared with those generated by Fergus et al. [17], Ben-Ezra and

Nayar [6] and back-projection [21]. In this example, the moving car is severely blurred with most

of the high frequency details lost. We demonstrate in (c) the limitation of using deconvolution

alone even with an accurate motion blur kernel. In this example, the super-resolution result in

(d) is better than the deconvolution result, but there are some high-frequency details that are

not recovered. Our result is shown in (e) which maintains most low-frequency details recovered

by super-resolution and also high-frequency details recovered by deconvolution. Some incorrect
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(a) (b) (c)

(d) (e) (f)

Fig. 16. Deblurring with and without multiple high-resolution frames. (a)(b) Input images containing both translational and

rotational motion blur. (c) Deblurring using only (a) as input. (d) Deblurring using only (b) as input. (e) Deblurring of (a) using

both (a) and (b) as inputs. (f) Ground truth sharp image. Close-ups are also shown.

high-frequency details from the static background are incorrectly retained in our final result,

because of the presence of some high-frequency background details in the separated moving

object layer. We believe that a better layer separation algorithm would lead to improved results.

This example also exhibits a basic limitation of our approach. Since there is significant car

motion during the exposure time, most high frequency detail is lost and cannot be recovered by

our approach. The ground truth in (f) shows a similar, parked car for comparison.

[Out-of-plane rotational motion] Figure 14 shows an example of out-of-plane rotation where

occlusion/disocclusion occurs at the object boundary. Our result is compared to that of Ben-Ezra

and Nayar [6] and back-projection [21]. One major advantage of our approach is that we can
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detect the existence of occlusions/disocclusions of the motion blurred moving object. This not

only helps to estimate the alpha mask for layer separation, but also aids in eliminating irrelevant

low-resolution reference frame constraints for back projection. We show our result by choosing

the first frame and the last frame as the reference frame. Both occlusion and disocclusion are

contained in this example.

[Zoom-in motion] Figure 15 shows another example of motion blur from zoom-in effects.

Our result is compared to Fergus et al. [17], Ben-Ezra and Nayar [6] and back-projection [21].

We note that the method of Fergus et al. [17] is intended for globally invariant motion blur, and

is shown here to demonstrate the effects of using only a single blur kernel to deblur spatially-

varying motion blur. Again, our approach produces better results with less ringing artifacts and

richer detail.

[Deblurring with multiple frames] The benefit of using multiple deconvolutions from mul-

tiple high-resolution frames is exhibited in Figure 16 for a pinwheel with both translational and

rotational motion. The deblurring result in (c) was computed using only (a) as input. Likewise,

(d) is the deblurred result from only (b). Using both (a) and (b) as inputs yields the improved

result in (e). This improvement can be attributed to the difference in high-frequency detail that

can be recovered from each of the differently blurred images. The ground truth is shown in (f)

for comparison.

[Video deblurring with out-of-plane rotational motion] Figure 17 demonstrates video

deblurring of a vase with out-of-plane rotation. The center of rotation is approximately aligned

with the image center. The top row displays five consecutive input frames. The second row

shows close-ups of a motion blurred region. The middle row shows our results with the first

low-resolution frames as the reference frames. The fourth and fifth rows show close-ups of our

results with respect to the first and the fifth low-resolution frames as the reference frames.

This example also demonstrates the ability to produce multiple deblurring solutions as de-

scribed in Section VI. For temporal super-resolution, we combine the results together in the

order indicated by the red lines in Figure 17. With our method, we can increase the frame rate

of deblurred high resolution videos up to the same rate as the low-resolution, high-frame-rate

video input.

[Video deblurring with complex in-plane motion] Figure 18 presents another video deblur-

ring result of a tossed box with complex (in-plane) motion. The top row displays five consecutive
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Fig. 17. Video deblurring with out-of-plane rotational motion. The moving object is a vase with a center of rotation approximately

aligned with the image center. First Row: Input video frames. Second Row: Close-ups of a motion blurred region. Third Row:

Deblurred video. Fourth Row: Close-ups of deblurred video using the first low-resolution frames as the reference frames. Fifth

Row: Close-ups of deblurred video frames using the fifth low-resolution frames as the reference frames. The final video sequence

has higher temporal sampling than the original high-resolution video, and is played with frames ordered according to the red

lines.

input frames. The second row shows close-ups of the motion blurred moving object. The middle

row shows our separated mattes for the moving object, and the fourth and the fifth rows present

our results with the first and third low-resolution frames as reference. The text on the tossed

box is recovered to a certain degree by our video deblurring algorithm. Similar to the previous

video deblurring example, our output is a high-resolution, high-frame-rate deblurred video. This

result also illustrates a limitation of our method, where the shadow of the moving object is not

deblurred and may appear inconsistent. This problem is a direction for future investigation.

[Video deblurring with a combination of translational and zoom-in motion] Our final

example is shown in Figure 19. The moving object of interest is a car driving towards the camera.
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Fig. 18. Video deblurring with a static background and a moving object. The moving object is a tossed box with arbitrary

(in-plane) motion. First Row: Input video frames. Second Row: Close-up of the motion blurred moving object. Third Row:

Extracted alpha mattes of the moving object. Fourth Row: The deblurred video frames using the first low-resolution frames as

the reference frames. Fifth Row: The deblurred video frames using the third low-resolution frames as the reference frames. The

final video with temporal super-resolution is played with frames ordered as indicated by the red lines.

Both translational effects and zoom-in blur effects exist in this video deblurring example. The

top row displays five consecutive frames of input. The second row shows close-ups of the motion

blurred moving object. The middle row shows our extracted mattes for the moving object, and

the fourth and the fifth rows present our results with the first and the fifth low-resolution frames

as reference.

VIII. CONCLUSION

We have proposed an approach for image/video deblurring using a hybrid camera. Our work

has formulated the deblurring process as an iterative method that incorporates optical flow, back-

projection, kernel refinement, and frame coherence to effectively combine the benefits of both
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Fig. 19. Video deblurring in an outdoor scene. The moving object is a car driving towards the camera, which produces both

translation and zoom-in blur effects. First Row: Input video frames. Second Row: The extracted alpha mattes of the moving

object. Third Row: The deblurred video frames using the first low-resolution frames as the reference frames. Fourth Row: The

deblurred video frames using the third low-resolution frames as the reference frames. The final video consists of frames ordered

as indicated by the red lines. By combining results from using different low-resolution frames as reference frames, we can

increase the frame rate of the deblurred video.

deconvolution and super-resolution. We demonstrate that this approach can produce results that

are sharper and cleaner than state-of-the-art techniques.

While our video deblurring algorithm exhibits high-quality results on various scenes, there exist

complicated forms of spatially-varying motion blur that can be difficult for our method to handle

(e.g., motion blur effects caused by object deformation). The performance of our algorithm is also

bounded by the performance of several of its components, including optical flow estimation, layer

separation and also the deconvolution algorithm. Despite these limitations, we have proposed

the first work to handle spatially-varying motion blur with arbitrary in-plane/out-of-plane rigid

motion. This work is also the first to address video deblurring and to increase video frame rates
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using a deblurring algorithm.

Future research directions for this work include how to improve the deblurring performance

through incorporating priors into our framework. Recent deblurring methods have demonstrated

the utility of priors, such as the natural image statistics prior and the sparsity prior, for reducing

ringing artifacts and for kernel estimation. Another research direction is to improve layer separa-

tion by more fully exploiting the available information in the hybrid camera system. Additional

future work may also be done on how to recover the background partially occluded by a motion

blurred object.
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