
Interactive 3D Modeling of Indoor Environments with a
Consumer Depth Camera

Hao Du1, Peter Henry1, Xiaofeng Ren2, Marvin Cheng1, Dan B Goldman3,
Steven M. Seitz1, Dieter Fox1,2

1Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA
{duhao,peter,kaiwen,fox,seitz}@cs.washington.edu

2Intel Labs Seattle, Seattle, WA, USA 3Adobe Systems, Seattle, WA, USA
xiaofeng.ren@intel.com dgoldman@adobe.com

ABSTRACT
Detailed 3D visual models of indoor spaces, from walls and
floors to objects and their configurations, can provide exten-
sive knowledge about the environments as well as rich con-
textual information of people living therein. Vision-based
3D modeling has only seen limited success in applications,
as it faces many technical challenges that only a few experts
understand, let alone solve. In this work we utilize (Kinect
style) consumer depth cameras to enable non-expert users to
scan their personal spaces into 3D models. We build a pro-
totype mobile system for 3D modeling that runs in real-time
on a laptop, assisting and interacting with the user on-the-
fly. Color and depth are jointly used to achieve robust 3D
registration. The system offers online feedback and hints,
tolerates human errors and alignment failures, and helps to
obtain complete scene coverage. We show that our prototype
system can both scan large environments (50 meters across)
and at the same time preserve fine details (centimeter ac-
curacy). The capability of detailed 3D modeling leads to
many promising applications such as accurate 3D localiza-
tion, measuring dimensions, and interactive visualization.
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INTRODUCTION
Detailed 3D visual models of indoor spaces, from walls and
floors to objects and their configurations, can provide exten-
sive knowledge about the environments as well as rich con-
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Figure 1. Interactive 3D mapping: color and depth frames from a con-
sumer depth camera are aligned and globally registered in real time.
The system alerts the user if the current data cannot be aligned, and
provides guidance on where more data needs to be collected. The user
can “rewind” and resume the process, and also check the quality and
completeness of the 3D model on-the-fly.

textual information of people living therein and how they
interact with the environment. As cameras become ubiqui-
tous and see fast growing usage, accurate 3D visual models
will be a cornerstone of future context-aware applications.

Accurate 3D models are difficult to build and thus have rarely
been used in applications. Most existing 3D scanning prod-
ucts work only on small objects. Scanning an indoor en-
vironment is possible but costly, usually requiring heavy-
duty laser scanners on special platforms such as robots [30].
These systems are far from accessible to average consumers.

Recently, image-based 3D modeling has become feasible,
with Photo Tourism [28] being a prominent example how
3D structures can be recovered by analyzing and matching
photos. There has been research work showing promising re-
sults on city-scale outdoor scenes [24, 1]. On the other hand,
indoor personal spaces remain difficult due to many techni-
cal challenges such as low lighting and textureless surfaces.
Limited successes have been reported, including the use of
the Manhattan world assumption [8], trading 3D geometric
accuracy for robustness in a constrained setting.



In this work, we present a prototype mobile system that en-
ables a non-expert user to build dense and complete models
for his/her personal environments, running on a laptop in
real-time and interacting with the user on-the-fly. One tech-
nology that makes this feasible is the wide availability of
affordable depth cameras, such as those deployed in the Mi-
crosoft Kinect system [19, 25]. These cameras directly pro-
vide dense color and depth information. However, their field
of view is limited (about 60◦) and the data is rather noisy
and low resolution (640×480). Henry et al [12] showed that
such cameras are suitable for dense 3D modeling, but much
was left to be desired, such as robustness for use by non-
experts, or complete coverage of the environment including
featureless or low-light areas.

The key idea behind our work is that, by running 3D model-
ing in real-time on a mobile device, the system can explore
the space together with the user and take advantage of on-
line user interaction and guidance (see Figure 1). We design
an interactive 3D modeling system so that the user holds a
depth camera in-hand to freely scan an environment and get
feedback on-the-spot. Online user interaction, with a freely
moving depth camera, solves many of the challenging issues
in 3D environment modeling:

Robustness: We compute 3D alignments of depth frames
on-the-fly, so that the system can detect failures (due to many
reasons such as fast motions or featureless areas) and prompt
the user to “rewind” and resume scanning. The success of
3D registration of consecutive frames is thus “guaranteed”.

Completeness: A 3D environment model is constructed on-
the-fly. The user can check the model in 3D at any time for
coverage and quality. The system also automatically pro-
vides suggestions where the map may yet be incomplete.

Dense coverage: Largely due to the use of a depth sen-
sor, our system produces visual models that are dense in 3D
space, even in textureless areas, comparing favorably to most
existing work in vision- or laser-based modeling. A dense
model reveals fine details of the environment.

Our system is capable of scanning large-scale indoor spaces,
such as office buildings of 50 meters across, with centimeter-
level details accurate in both 3D geometry and color appear-
ance. We show a variety of models built with our online mo-
bile system covering different sizes and types, when used by
both expert and non-expert users. We compare our interac-
tive system to traditional offline approaches and demonstrate
how user interaction makes the system robust enough to be
accessible to everyone with a depth camera1.

How can we use such a detailed 3D map? We demonstrate
three promising directions: (1) localization in 3D space ap-
proaching decimeter accuracy; (2) measuring dimensions of
spaces and objects; and (3) photorealistic visualization of 3D
environments applicable to virtual remodeling and furniture

1Supplemental videos demonstrating our interactive system can
be found at: http://www.cs.washington.edu/robotics/
projects/interactive-mapping/

shopping. We believe that a consumer-friendly 3D modeling
system will open up many more opportunities for interesting
applications that may benefit from a rich 3D context.

RELATED WORKS
Geometrically modeling a physical environment is a prob-
lem of general importance, and for a long time it was done
manually by specialists using specialized tools. Automati-
cally mapping an environment is challenging, and one suc-
cess story is that of using a laser scanner on a mobile robot [7,
30]. Robot mapping has been shown to be robust, but is
mostly limited to 2D maps and relies on expensive hardware.

In the Ubiquitous Computing community, much attention
has been devoted to a closely related problem: localization.
A variety of signals has been used in indoor localization [13,
17, 2], such as 802.11 [3], GSM [22], and recently powerline
signals [23]. There is a limit on the localization accuracy us-
ing these low-rate signals, the state of the art being around
0.5 meters [32]. Many efforts have been made on how to
simplify and avoid extensive calibration [18].

Vision-based 3D modeling techniques have been gaining pop-
ularity in recent years. Building on multi-view geometry [11]
and in particular bundle adjustment algorithms [31], 3D struc-
tures can be recovered from a set of 2D views. PhotoTourism
[28] is an example where sparse 3D models are constructed
from web photos. There has been a lot of work on multi-
view stereo techniques [26]. The patch-based framework [10],
which has been most successful on object modeling, has also
been applied to environment modeling. The work of Fu-
rukawa et al. [9] built on these works and obtained dense
indoor models using the Manhattan world assumption.

There have been successful efforts to build real-time sys-
tems for 3D structure recovery. Davison et al. built real-time
SLAM (simultaneous localization and mapping) [5] systems
using monocular cameras. Klein et al. built the Parallel
Tracking and Mapping (PTAM) [15] system which applies
SLAM for tracking. Pollefeys et al. [24] proposed real-time
solutions for street-view reconstruction. Newcombe et al.
[20] recently used PTAM and optical flow techniques to com-
pute dense depths. Many real-time systems are limited to
small-scale spaces.

Due to the difficulties of indoor modeling such as low light-
ing and lack of texture, interactive approaches have been
proposed to utilize human input. [6] was an early exam-
ple showing very impressive facade models and visualiza-
tions with manual labeling. [29] used interactions to extract
planes from a single image. [27] was a recent example com-
bining user input with vanishing line analysis and multi-view
stereo to recover polygonal structures. Our approach to in-
teractive mapping is different in nature, as we enable online
user interaction, utilizing user input on-the-fly for both cap-
turing data and extracting geometric primitives.

The arrival of consumer depth cameras such as Kinect [19]
and Primesense [25] is significant. We believe these afford-
able depth cameras will soon see extensive uses in applica-

http://www.cs.washington.edu/robotics/projects/interactive-mapping/
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Figure 2. Detailed system overview: frame alignment, loop closure de-
tection, and global alignment are performed in real time. Green boxes
represent user interactions. The user is alerted if alignment fails, is no-
tified of suggested places to visit, and can verify and improve the model
quality via manual loop closure.

tions beyond gaming, in particular in 3D modeling, making
it accessible to consumers. The work by Henry et al. [12]
is the most relevant as a pioneer of 3D modeling using con-
sumer depth cameras. They carried out experimental studies
of alignment algorithms and combinations using both color
and depth. Our work aims at making such a depth-camera-
based modeling system work in real-time, incorporating var-
ious aspects of user interaction to make 3D modeling robust,
easy to use, and capable of producing dense, complete mod-
els of personal spaces.

SYSTEM OVERVIEW
Figure 2 shows an overview of the design of our interactive
mapping system. The base system follows a well-established
structure of 3D mapping, which partitions the registration
of RGB-D (color+depth) frames into local alignment plus
global alignment. Local alignment, or visual odometry [21],
is a frame-to-frame registration step matching the current
frame to the most recent frame. The current frame is also
matched to a subset of “keyframes” in the system to detect
“loop closure” [16, 12, 4], i.e. whether this is a revisit to a
known scene. Global alignment uses loop closure informa-
tion to jointly optimize over all the RGB-D frames to pro-
duce globally consistent camera poses and maps.

User feedback and interaction is enabled at multiple levels
in our system. First, if local alignment fails, i.e. the current
frame cannot be registered into the map, the system alerts the
user and pauses the mapping process. The user re-orients
the camera with suggestions from the system, until local
alignment succeeds and the mapping resumes. Second, the
user has control over loop closure detection by verifying and
adding links that are difficult decisions for an automatic al-
gorithm. Combining both, our system is robust to algorithm
failures or human errors, making it “guaranteed” to produce
globally consistent maps given sufficient user supervision.

In our system, the globally aligned map is visualized on-the-
fly, as shown in Figure 3. The user can see how the 3D map
grows in real-time, freely change the 3D viewpoint to check
for inconsistencies and completeness, and plan the camera
path accordingly to ensure a complete and consistent map.
To facilitate, the system continuously checks the complete-
ness of the current map, provides visual feedback about in-

complete areas, and guides the user to locations from which
the view could bring added map coverage.

By closely integrating the user into the data collection phase
and making him/her fully aware of the state of the process,
our interactive system avoids many pitfalls in 3D mapping
and achieves robustness and completeness even in challeng-
ing cases. As can be seen in Figure 1 and the supplemental
video, our prototype system runs on a laptop, and is fully
mobile. We envision that, in the near future, such a system
can be integrated and packaged to a portable form factor with
a touch interface and become accessible to everyone.

ROBUST RGB+DEPTH REGISTRATION
In this section we describe the core of our real-time 3D regis-
tration algorithm. The 3-Point matching algorithm is used to
compute full 6-D transformations between frame pairs [14].
A novel matching criterion is used to combine RANSAC in-
lier count with visibility conflict. Combining the visibility
criterion, matching is much more robust in difficult cases
where the inlier count is small and becomes unreliable.

RANSAC and 3-Point Matching
Following the RGB-D alignment approach in [12], we detect
visual features in the color frame using the GPU implemen-
tation of the standard SIFT features [33], find matches using
the SIFT ratio test, and use RANSAC to prune outliers and
find the camera pose transform between two frames. It is
worth noting that since we have depth information for the
visual features, only 3 point pairs are needed in RANSAC
search, making it much more robust and efficient than the
classical 7-point solution. Moreover, the 6-D full transform
can be computed without scale ambiguity.

Consider N pairs of initial feature matches between Frame
F1 and F2, represented by 3D coordinates (Xi

1, X
i
2) in their

respective reference systems. RANSAC samples the solu-
tion space of (R, T ) (rotation and translation) and estimates
its fitness by counting the number of inliers, f0,

f0(F1, F2, R, T ) =

N∑
i

L(Xi
1, X

i
2, R, T ), (1)

where,

L(Xi
1, X

i
2, R, T ) =

{
1, e = ‖RXi

1 + T −Xi
2‖ < ε

0, otherwise

and ε is the threshold beneath which a feature match (Xi
1, X

i
2)

is determined to be an inlier. RANSAC chooses the trans-
form consistent with the largest number of inlier matches.

Combining RANSAC with Visibility
The RANSAC framework above only accesses depth values
at the SIFT feature points. To make use of dense depth in-
formation available at all pixels, we introduce a visibility
confliction term and combine it with the RANSAC inlier
count. Consider the 2D example shown in Figure 4 (left),
showing two camera views. The circles and stars are the
depth maps sampled at the camera pixels. When (R, T ) is



Figure 3. Real time visualization of the mapping process: The left panel provides a 3D view of the globally aligned map. The health bar in the center
right panel indicates the current quality of frame alignment. In a failure case, as is shown, the user is guided to re-orient the camera with respect to
a target frame registered in the map. The upper right panel shows this target frame, and lower right panel indicates the current camera view.

the genuine relative transformation, the two scenes overlap
perfectly. When (R∗, T ∗) is a wrong relative transforma-
tion, shown in Figure 4 (right), overlaying the point clouds
from both cameras, it is possible to see visibility conflicts –
when a camera captures a scene point in 3D, the space along
its viewing line should be completely empty; if there exist
points from the other camera in between due to a incorrect
(R∗, T ∗), there is a conflict.

Figure 4. Visibility conflicts. Left: what a surface should look like
from two depth camera views. Right: inconsistent camera poses lead
to visibility conflicts, useful information for RANSAC search.

We compute visibility conflict by projecting the point cloud
C1 from frame F1 onto the image plane of F2, and vice
versa. If the depth of a pixel of C1 is smaller than the depth
of the F2’s pixel at the corresponding location (larger than a
varying threshold equal to depth uncertainty), it is counted
as a visibility conflict. We compute the following quantities:
number of visibility conflicts (f1); average squared distance
of points with visibility conflicts (f2); number of visibility
inliers (f3) by counting those pixels where no visibility con-
flicts both ways of projections. We use a linear function to
combine these with the RANSAC inlier count:

g(F1, F2, R, T ) =

m∑
i=0

αifi (2)

wherem is the number of quantities involved, and the weights
αi are learned through linear regression.

INTRODUCING USER INTERACTION
User interaction has been utilized in 3D modeling to over-
come the incompetency of automatic algorithms in hard cases
(e.g. [27]). Existing work typically views user interaction as
a post-processing step: after all the data have been acquired,
the user sits down at a desktop computer, and then marks up
and corrects structures in the model.

Our approach utilizes interaction in a different nature – in-
volving user interaction early in the image data acquisition
stage as well as in post-processing. Decent source data is
crucial for a successful reconstruction, and user interaction
can significantly help data capture. We envision that a com-
pact mobile system/device can be developed for a user to
hold in his/her hand, freely move it to scan scenes, and in-
teract with the system as the 3D map is being built. We view
data acquisition and model construction as one integrated
process that happens on-the-spot.

As shown in Figure 2, our prototype system incorporates
three types of user interactions to achieve robustness and
completeness in 3D mapping: (1) failure detection and
rewind/resume; (2) scene completeness guidance; and (3)
user-assisted loop closure.

Rewind & Resume and Failure Tolerance
In the case of indoor 3D mapping, each camera view or
frame usually covers a small area of the entire scene, so it is
crucial to align the frames together and merge them. Since
consecutive frames have the most similar views, a typical
approach is to align neighboring frames first.

Frame-to-frame matching, however, can fail for many rea-
sons, especially at the hand of a non-technical user who does



not have any understanding of the mechanisms and limits of
vision-based mapping. For example, if the user moves the
camera too fast, motion blur will fail the matching. Even if
the user is careful, matching can fail when the field of view
does not contain sufficient color and geometric features. As
we will see in the experiments, even with a state-of-the-art
RGB-D mapping approach, failures can be frequent.

We design our system to be robust to matching failures, with
what we call Rewind and Resume. When a frame fails to
register with the previous frame, the system raises an alert,
pauses the mapping process, and waits for a new frame that
can successfully register (Figure 3). The system shows the
user what frame it expects, so the user can move the camera
to match the expected view. Moreover, it is not limited to
the most recent frame: the user can either “undo” and drop
the most recent frames (say to remove frames of an intruding
person), or “rewind” to any previous frame in the system and
“resume” at a different point. This results in a tree-structured
data flow and makes the system more flexible and usable.
The user can save the partial map to disk, and resume on a
different day from any scene that is already captured.

Model Completeness
Capturing a complete 3D model of the scene is desired, be-
cause large missing areas in an incomplete 3D model signif-
icantly lower the visual quality. A missing area exists in the
scene either because the area has never been captured or the
frames that did contain the area did not get depth values, for
reasons such as camera range or surface slant.

We consider the completeness in a user-defined manner. Us-
ing a passive capturing system, it can be very difficult for the
user to be aware of which parts of the scene have been cap-
tured. With an online system, the user can view the current
reconstruction in real time, view the up-to-date 3D model,
and directly see which areas are missing.

Figure 5. Completeness Guide. At the user’s request, our system dis-
plays the classification of voxels from a user specified 2D slice in the 3D
point cloud. Green: the voxel is guaranteed to be “empty”; Red: it is
“occupied”; Blue: “unknown” area.

In order to further assist users in finding uncaptured areas,
our system is able to estimate completeness. Consider a
bounding box that contains the currently reconstructed point
cloud. The inside of the bounding box can be represented
by 3D grid voxels. Each grid voxel is classified into one of
the three categories: (1) “occupied”: there is at least a scene

point in that voxel; (2) “empty”: there must be no scene point
in the voxel; (3) “unknown”: none of the above. All voxels
are initialized in Category (3). A voxel is set as Category (1)
when there exists a scene point. A voxel is set as Category
(2) when it is not (1) and the voxel has been seen through by
any of the existing camera viewing line.

Figure 5 shows the classification of voxels from a user spec-
ified 2D slice in the 3D point cloud. Green: the voxel is
guaranteed to be “empty”; Red: it is “occupied”; Blue: “un-
known” area. The user’s goal is then to paint all areas in
either green or red by exploring the 3D space.

Interactive Loop Closure
Loop closure (global pose optimization based on frame-pair
matches captured at different times) helps to fix the accu-
mulated errors originating from sequential frame-to-frame
matching. Automatic loop closure is hard as there may be
large differences between scene frames over a loop [12]. A
single matching outlier due to low lighting or few features
could cause the whole loop to be inconsistent.

A decent loop closure does not require matches between
many pairs of frames. When combined with frame-to-frame
alignments, a few matches over key frames can well con-
strain the entire loop and facilitate global consistency. This
provides us an opportunity to involve user supervision. Our
system runs an automatic matching algorithm to select can-
didate frame pairs, ranks them using the proposed visibility
criterion, and then suggests frame pairs with large visibility
conflicts. The user can select any frame pair to perform a
RANSAC or ICP based alignment to add a loop closure con-
straint, inspect the resulting map, and then decide to accept
or reject the newly added constraint.

3D MAPPING EVALUATIONS
In this section, we present experimental results of our 3D
mapping system. We show three types of evaluations: (1)
how our RGB-D RANSAC utilizes dense depth informa-
tion and outperforms classical computer vision solutions; (2)
how user interaction plays an essential role in making map-
ping successful; and (3) how our results compare to the state
of the art in vision-based 3D modeling. We also show exam-
ples of the 3D models that we have scanned with the system.

We use a PrimeSense camera [25] with resolution 640-by-
480 and an effective range of 0.5m to 5m. The depth uncer-
tainty, needed for visibility conflict, is calculated from cam-
era specifications ( 7.5cm baseline, 570 pixel focal length),
approximately 0.03cm at a distance of 0.3m and 7cm at 5m.
All the computations and visualizations are done on an Intel
i7-720qm laptop at 3 to 4 frames per second.

RGB-D RANSAC for Visual Odometry
We compare the accuracy of the 3-point RANSAC solution
on RGB-D frames to that of the 7-point algorithm [11]. We
generate feature pairs via bidirectional matching, consider-
ing a pair matched if they are both the best matching fea-
ture to the other, and the second best match has significantly
higher distance in the feature descriptor space (ratio> 1.25).
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Figure 6. (Left) Alignment errors of 7 point 2D RANSAC and 3 point
3D RANSAC versus number of inliers. (Right) Percentage of mis-
aligned frames of 3D RANSAC vs 3D RANSAC+Visibility.

2D versus 3D RANSAC. We collect a long RGB-D sequence
in the lab through slow motion and use our system to gener-
ate a globally optimized map, shown in the bottom left panel
of Figure 12. Visual inspection shows that the resulting map
is highly consistent, and we use the globally optimized poses
as groundtruth. We randomly sample frame pairs from this
dataset and compare the 7-point 2D RANSAC (without fur-
ther optimization after obtaining 7-point algorithm) solution
and the 3-point 3D RANSAC solution. 2D RANSAC finds
15, 149 valid pairs (≥ 7 inliers), with an average reprojection
error of 0.69m. 3D RANSAC finds 15, 693 valid pairs (≥ 3
inliers) with an error of 0.31m. Figure 6(left) shows the re-
projection error versus the number of inliers in the solution.
Using depth information within RANSAC (3D RANSAC)
clearly reduces reprojection errors and generates good re-
sults even for a small number of inliers.

3D RANSAC with Visibility Features. We also compare the
accuracy of 3-Point RANSAC with and without incorporat-
ing the visibility conflict criterion. We collect a dataset by
placing the depth camera at 12 different locations, measure
their ground truth distances, and rotate the camera at each
location to take 100 depth frames. We randomly pick pairs
of camera frames, and randomly split the set into training
(linear regression for weights) and testing. Figure 6 (right)
shows the results using a threshold of 0.1m on camera trans-
lation for determining a misalignment. “RANSAC + Visi-
bility” produces more accurate camera poses and is capable
of working with a lower threshold on RANSAC inliers.

The Importance of User Interaction
To evaluate the capability of our interactive system to gen-
erate improved visual odometry data, we performed a small
study in which four persons were tasked to collect data for a
map of a small meeting room. A 3D map generated with our
system is shown in Figure 7. For each of the four people, we
determined if (s)he was able to collect data that can be con-
secutively aligned for visual odometry. Two of the people
were “expert users” who had substantial experience in using
the depth camera for mapping purposes. Two persons were
“novice users” who had not studied mapping. The different
mapping runs collected between 357 and 781 frames. In all
cases, the users were able to complete the mapping process
using the interactive system.

The results for this small-scale user study are shown in Ta-
ble 1. We evaluate the mapping process using several quanti-
ties: for offline mapping (similar to the setup in [12]), we can

Figure 7. Top down view of 3D map of meeting room used to evaluate
the benefits of interactive mapping.

detect failures in the mapping algorithm (when RANSAC
fails). The first time (frame number) when failure occurs is
a measure of how far a user can go into the process, or how
complete a map he can expect, if there is no feedback and
the user blindly continues data collection. Similarly, the av-
erage number of frames between failure is a measure of how
often failure occurs and how large a map can grow in offline
mapping. For online interactive mapping, the system reports
failures directly and recovers from them, so we can count the
number of failures when users finish. Finally, we ask the user
to start and finish on a table, so the groundtruth heights of the
start and end poses are the same (vertical distance zero). We
compute the vertical distance of the estimated camera poses
and use it as a measure of alignment error.

While the sample size may be too small to be conclusive,
we do see patterns and trends in these results showing the
promise of interactive mapping. We see that failures oc-
curred often, and for a moderately difficult scenario like the
conference room (low lighting and many textureless areas),
the users failed early in the process using the offline sys-
tem, and could only complete 3 to 10 percent of the process.
The mean time between failure was only seconds. On the
other hand, the online interactive system always “worked”:
the users all managed to recover from the failures and com-
pleted the process by going from the assigned starting point
to the end. That is also reflected in the vertical alignment
error – the offline errors are much larger than online errors,
suggesting that offline mapping failed and interactive map-
ping had reasonable successes.

Comparison to Bundler and PMVS
We compared our system, using cheap depth cameras, to that
of the state-of-the-art approach of using Bundler [28] and
PMVS [9] which reconstruct dense 3D models from photo
collections. We collected a depth camera sequence (Prime-
Sense) and a collection of high-res camera images (Canon
5D Mk II) of a wall and a textured white board standing in
front of it. Figure 8 shows a zoom into the white board part
of the reconstruction achieved by our system (left) and by
Bundler+PMVS using the high-res images. Even with a lot
of texture and super high-res photos, PMVS failed to pro-
duce a dense model, leaving many holes. Our system cap-
tured entire areas densely without holes.



Metrics Offline (novice) Interactive (novice) Offline (expert) Interactive (expert)
#frame at 1st failure (offline) 15.0 - 66.5 -

Mean #frame to failure (offline) 9.9 - 9.6 -
#failure (interactive) - 9.0 - 17.0
Alignment Error (m) 1.14 0.11 1.12 0.05

Table 1. A small-scale user study of 4 users, 2 expert (who know 3D mapping) and 2 non-expert (do not know 3D mapping), comparing interactive
mapping with state-of-the-art offline mapping. While the sample size may be too small to draw any conclusion, these results do strongly suggest that
interactive mapping has great potential and can make the mapping process robust and error-tolerant.

Figure 8. 3D reconstruction by our interactive system (top) and by
Bundler+PMVS using high-res camera images (bottom). Blue indicates
areas without any reconstruction.

Acquired Models of Large Indoor Environments
Figure 12 shows examples of maps we built with our interac-
tive system. These results were achieved by collecting good
visual odometry data using the failure detection and relocal-
ization process. For large maps, automatic loop closure ran
into troubles, and the interactive system allowed us to add
loop closure constraints manually. The globally consistent
map shown at the top was generated with 25 manual loop
closure links merging with automatic loop closure.

3D MAPPING APPLICATIONS
What can detailed 3D models be used for if everyone can
scan their personal spaces into 3D? As can be seen in the
map visualizations and the supplemental video , our interac-
tive system produces accurate 3D models that contain a large
amount of detail, from large architectural elements (e.g. walls
and floors) to small-sized objects situated in 3D settings.
There are a multitude of possible applications, especially in
context awareness and wearable computing, where the 3D
map, along with objects inferred from it, provides rich con-
text for users and their activities.

We briefly explore and demonstrate three potential applica-
tions: (1) 3D localization, locating a camera view in a pre-
computed map; (2) measuring dimensions, obtaining lengths
and sizes in the virtual map; and (3) free exploration and
photorealistic rendering of the environment, with connec-
tions to virtual furniture shopping. We leave rigorous devel-
opments and evaluations of the applications to future work.

Accurate 3D Localization
Once we have a 3D model constructed, we can turn our sys-
tem into a localization mode, where new camera views are
continuously registered but the map is no longer updated.
This simple change allows us to localize a depth camera in
3D space, comparing to typical 2D localization.

Figure 9. 3D localization: using a pre-computed 3D map captured on
a different day, our system localizes itself in 3D (position+orientation).
Shown is the path of (3D) camera poses from two viewpoints.

Figure 9 shows an example of how 3D localization works
with our approach. The map shown is built from a sepa-
rate set of data captured on a different day. When we run
the mapping system on a new day, new RGB-D frames are
registered into the existing map through loop closure, and
then continuously tracked over time in 6-D pose. The path
of camera poses, of about 100 views, is shown at the center
of the map from two view points. More details can be found
in the supplemental video.

Although we do not have groundtruth for camera poses, it
should be clear from the camera path that (1) our approach
can localize in 3D, both in translation and in rotation, not



just in a flat 2D plane; (2) a vision-based localization ap-
proach, using a detailed 3D map, can achieve localization
accuracy that is much higher than using other sensing modal-
ities such as Wi-Fi. While 0.5m accuracy is normal for a
Wi-Fi based system [32], our approach has the potential to
achieve decimeter or even centimeter level accuracy. Such
high-accuracy localization, possibly done with a wearable
camera, can be useful for many location-based applications
and also in robotics. An RGB-D approach like ours will also
be robust to lighting conditions and textureless areas.

Measuring Dimensions of Spaces and Objects
A second application, directly derived from the geometric
correctness of the 3D models, is to measure dimensions and
sizes of spaces and objects virtually. Imagine a person goes
into an environment, moves the camera and scans it into 3D.
Now he has all the 3D information in the virtual model, and
he can measure the dimensions of anything later. If a person
builds a 3D model of his home, if there is any need for mea-
surements, for instance when shopping for furniture, he can
easily do it on a mobile device in his virtual home.

Figure 10. Measuring dimensions of objects (length, width, height) in a
virtual model (top). We show quantitative evaluations of the measured
virtual dimensions comparing those in the physical world (bottom).

Figure 10(top) shows an example of the dimensions that we
measure from a virtual model of the Espresso Room. A sin-
gle 3D model contains many details such as distances be-
tween walls and sizes of objects, which can be easily mea-
sured. In Figure 10(bottom) we compare measurements in
the virtual models (espresso room and building hallway) to
that done in the physical world (with a laser meter). We see
that the measurements in the 3D model is accurate, with er-
rors typically under one percent. We also notice that there

is a systematic bias in these measurements, suggesting that
the measurement accuracy may still improve with better cal-
ibration and/or better camera hardware.

Interactive Visualization and Furniture Shopping
One can take the furniture shopping application further: with
a detailed 3D model, not only can we measure dimensions
in the virtual model to see if a piece of furniture fits, we can
potentially visualize, photo-realistically, how the furniture
may fit into the home. The rendering can incorporate differ-
ent arrangements of furniture, different colors, and changing
illuminations.

Figure 11. A gesture-controlled flythrough system running on a 3D TV.
The user uses hand gestures to navigate through a virtual space being
rendered in real-time; he can also use gestures to place a downloaded
sofa model into the constructed model.

Toward this goal, we have developed a prototype interactive
visualization system, as shown in Figure 11, on a 3D TV.
The system has a gesture control interface using the same
type of depth camera: the user uses hand gestures to con-
trol up, down, left, right, forward and backward. The ges-
tures are used to navigate through the virtual space while it
is rendered at real-time, using level-of-detail control and hi-
erarchical culling. The same gestures can also be used in
a furniture placement mode, where a pre-downloaded furni-
ture model (e.g. from Google 3D Warehouse) is rendered
into the constructed environment model.

DISCUSSIONS AND FUTURE WORK
We have presented a prototype mobile system for 3D map-
ping and modeling that introduces and extensively uses on-
line user feedback and interaction. We allow the user to
freely move a camera through an indoor space, track the 3D
mapping process, recover from (inevitable) registration fail-
ures, and achieve complete coverage through visual inspec-
tion and automatic guide. We have successfully scanned a
variety of indoor spaces using the system, including large
spaces up to 50 meters across with centimeter level details.

How may such a detailed and accurate 3D model be use-
ful? We have briefly shown and discussed three applica-
tions: 3D localization with the potential of centimeter level
accuracy; measuring dimensions of spaces and objects with
99% accuracy; and photorealistic visualization of personal
spaces, with possible applications in virtual furniture shop-
ping. These are all promising directions, and we plan to ex-
plore them in depth in future work.



Figure 12. A variety of indoor spaces that we have captured using our 3D mapping system. (top) a large office space (50 meters across), with a detailed
zoom-in view. (middle) another office building structure with repetitive offices and long hallways. (bottom) a (small-size) office and a (small-size)
coffee room with furnitures and details.

Our work shows great promises for personal 3D mapping
and opens up many possible applications. While 3D model-
ing is traditionally known to be hard, consumer depth cam-
eras, real-time mapping, and user interaction have great po-
tential to make it accessible to everyone. Our vision is that
we can soon build compact mobile devices that allow a con-
sumer to build 3D models for personal spaces. As shown in
localization, such a 3D model can provide rich information
for many applications that benefit from spatial contexts.

A lot more information can be extracted from such detailed
3D models other than spatial dimensions and layout. As seen
from the maps in Figure 12, rich details show opportunities
for semantic analysis, such as finding walls and floors, ex-
tracting objects, and learning human-object interactions.
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